
The locomotion of microscopic biological swimmers is governed by the viscous
drag of the fluid that surrounds them and is independent of their inertia. We have
studied, theoretically and computationally, microorganisms that pass transverse
waves along thin, elastic, inextensible, whip-like appendages and are confined to
thin incompressible membranes embedded in bulk fluid of a different viscosity.
Microscopic swimmers must continually deform their bodies to propagate and, in
their motion, they disturb the fluid in both the membrane and bulk. The flows that
emerge feature both two-dimensional (2D) and three-dimensional (3D)
hydrodynamics, and so such flows are often referred to as “quasi” 2D. Our
theoretical model generalizes the Levine and Mackintosh theory for the fluid
response to a localized point-like force in a quasi-2D membrane. We applied a
boundary element method to numerically investigate the 2D to 3D crossover
effects on the swimming velocities of flagellated microorganisms, both finite and
infinite in length.
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Fig. 2 Cartoon illustrating a micro-swimmer confined to a membrane of thickness
h embedded in a bulk fluid of different viscosity.

Fig. 1 The Reynolds numbers for a macroscopic organism (Orcinus orca, left) and
a microorganism (E coli., right) swimming in water. Microscopic critters react
instantaneously to any forces, oblivious to any history of prior dynamics and so,
recoil swimming, the primary method of propagation for macroscopic swimmers
(humans, sharks, whales, etc.) which relies on trading momentum with the fluid
to induce a net force for propulsion, is ineffective here. The net force on micro-
critters is zero at all times.

Swimming of Biological Filamentous Microorganisms 
in Quasi-2D Membranes

Biological microorganisms have adapted to live in an environment where the
viscous damping forces greatly exceed their inertia. For a microscopic critter with
a body size on the order of tens of micrometers and swimming in water with a
speed of a few body lengths per second, the Reynolds number R, a dimensionless
parameter that is the ratio of inertial forces to viscous forces, is small, R ∼ 10−4 −
10−3. In such a viscous environment if a critter stops paddling, its motion is
slowed to a halt in mere microseconds, coasting only Angstrom scale distances.
One category of biological swimmers, including spermatozoa, E. coli, and C.
crescentus, swim by passing transverse waves along the length of their flagella,
which are long and thin extensions (tails) on their bodies. Due to the geometrical
asymmetry of the flagella, the critters experience an anisotropic viscous drag from
the surrounding fluid, which generates their propulsion. We studied
microorganisms that swim by moving a single flagellum in a wavelike manner.

Oftentimes, microscopic critters are confined to swim in thin membranes
surrounded by bulk fluid of a different viscosity. We explore the effect of
confinement on the hydrodynamics of swimming microorganisms in a thin film.
As the critters move, they excite flows in both the membrane and the bulk. The
presence of a bulk fluid allows one to introduce a length scale, the so-called
Saffman length lS, given by the ratio of 2D membrane viscosity to 3D viscosity of
the embedding fluid. This length scale governs whether energy is dissipated
primarily in the membrane or in the bulk and determines the spatial decay rate of
the flow field in the membrane due to a perturbation.

Introduction
Infinitely Long Flagellum

The flow field due to a moving swimmer is modeled as a superposition of flow fields due to an array of point-like
forces F applied to the membrane. A no-slip boundary condition is enforced at the surface of the swimmer:

Where v is the surface deformation velocity, U is the swimming velocity, G is the Levine-Mackintosh response
function. The material points of the flagellum move in a prescribed wavy motion:

The net force on the swimmer is zero at all times:

These equations form a closed system of algebraic relations that can be solved for the swimmer’s propagation
velocity U and the forces F simultaneously. We solved this system of equations in MATLAB.

Reynolds number R = inertia/viscous friction

Fig. 3 Top view. This membrane-bounded flagellated swimmer is passing
waves of the form " #, % = '()* + # + (% to the left. The drag
anisotropy due to the flagellum geometry and its surface deformation
produces a propulsion to the right.

Fig. 4 Swimming velocity of flagellum with contour lengths of various multiples of the
Saffman length are plotted. The swimming velocities are averaged over a period of wave
motion and scaled by the wave speed c at which the swimmers pass waves of the form
" #, % = '()*[+ # + (% ] in quasi-2D fluid. The flagella were traced by 500 mesh
points per wave. The amplitude was set to ' = 0.12

Fig. 6 Average swimming velocity scaled by the squared non-dimensional
amplitude parameter bq. At large wavelengths in comparison to the Saffman
length, the swimming velocity at small bq in quasi 2D fluid is logarithmically
dependent on the wavelength.
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Fig. 7 t = 0 snap shots of the flow field of wavy flagella of different wavelengths in
quasi 2D fluid. The flow field was represented as that due to an array of 100 force
points per wave of wavy flagellum and calculated via our boundary element
model. The non-dimensional amplitude parameter was set to '+ = 3

4 and the
flagellum contour length was set to 2 = 2.5Λ, where Λ is the arc length of a single
wave of the form " #, % = 0 = '()* +# . The wavelength was set to (a) 8 =
9. 9:lS, (b) 8 = :lS, (c) 8 = :9lS (d) 8 = :99lS. The velocity intensities are color
coded.

As flagellated organisms propagate through fluid, by passing transverse waves,
they create vortices near the troughs and crests of their waves. For a flagellum
passing waves to the left, propulsion is produced towards the right and its crests’
vortices are clockwise oriented, while those near the troughs are counter-
clockwise oriented. Since the swimmers deformations are planar, the swimmer
remains in the same plane only producing planar shearing flows that decay with
distance in all directions. In figure 7 below, the flow field of swimmers at different
length scales are shown. It can be seen that the spacial decay rates of the
generated flows due to the swimmers perturbing the membrane as they swim is
larger for swimmers that are larger in comparison to the Saffman length lS.

Conclusion
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We studied propulsion of microorganisms confined to a viscous membrane 
embedded in bulk fluid. We investigated the dependence of the swimming speed 
on the hydrodynamic length scale (the Saffman length) and thus studied the 
crossover from two-dimensional to three-dimensional behavior. In the limiting 
case of the flagellum length much smaller than the Saffman length, the energy is 
primarily dissipated in the membrane, and the swimmer exhibits properties of a 
purely 2D swimmer. In the opposite limit of the flagellum much larger than the 
Saffman length the swimmer’s speed is greater than that in purely 2D or 3D fluids 
and approaches the upper bound: the wave propagation velocity.  
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Fig. 5 Average swimming velocity scaled by wave speed c vs. dimensionless
amplitude parameter bq for an infinitely long swimmer with a modulation
" #, % = '()*[+ # + (% ] in 2D, 3D, and quasi-2D fluid. The quasi 2D velocity
is plotted for various values of the wavelength scaled by the Saffman length. The
flagella were traced by 500 mesh points per wave. Cortez’ regularized force-
point response functions [5] were used to calculate the swimming velocities in
2D and 3D fluid, setting the regularization parameters to 0.25; and 0.9;,
respectively, where ; is the mesh point spacing.

• The propulsion of flagellated organisms in viscous flows is owed to the drag

anisotropy from their geometry.

Model

• Membrane-bound organisms smaller than the Saffman length generate flows

primarily dissipated in the membrane and so feature properties of 2D swimmers.

• On this scale the long range flows on a portion of flagellum, due to other portions,

are significant and oppose the drag on the swimmers from which they gain their

propulsion.

Large Saffman Length

Small Saffman Length
• Quasi 2D swimmers on length scales larger than the Saffman length perturb flows

that are dissipated by the bulk fluid more so than in the membrane fluid.

• On this scale the long range flows on a portion of flagellum, due to other portions,

are reduced, and so, the swimmers can utilized the drag anisotropy for propulsion

to a greater degree.

• Due to the 2D incompressibility of the membrane, the drag anisotropy is

logarithmically dependent on the length scale of the flagellum allowing the

organisms to achieve larger swimming velocities.

• At small amplitudes, drag can be approximated as local and linear in velocity.
• In simple viscous fluids, the drag anisotropy at small amplitudes is very close to

2:1.
• In a quasi-2D membrane, the drag anisotropy, on length scales larger than the

Saffman length, becomes logarithmically dependent on the length scale.
• At large amplitudes, long range flows reduce the propulsion of swimmers in

simple fluid.
• In quasi 2D fluid, these long range flows are dissipated to a greater degree due to

the presence of the bulk fluid and the 2D incompressibility of the membrane.
• Quasi 2D swimmers can achieve swimming speeds that logarithmically approach

the wave speed at the largest length scales.


