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employ values of N greater than those considered here so as to meet the
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solutions we employed an average edge size ⟨L⟩ ≈ 0.1 nm. . . . . . . . . . 44

xvii



2.8 Convergence of BVM solutions for the elastic energy of polygon protein-
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protein boundary and the bilayer thickness deformation field obtained
from the BVM solution, ηb′ in Eq. (2.25), as a function of the number of
terms, N , in the Fourier-Bessel series in Eq. (2.20) with Eq. (2.21) for the
boundary point distributions implied by the APD method (see Sec. 2.2.2),
using the indicated values of P in Eq. (2.18) and (2.19) with s = 5. (b)
Percentage difference between the FEM and BVM solutions for Ḡ, µ′

G

in Eq. (2.29), where we calculated the BVM solutions for the polygon
protein shapes in Eqs. (2.18) and (2.19) as a function of P and with the
indicated values of s, R̄λ ≈ 2.3 nm, Ūλ = 0.3 nm, Ū ′ = 0, N = 750, and
Ω ≈ 0.32, 0.24, 0.18, 0.16, and 0.16, for symmetries s = 4, 5, 6, 7, and 8,
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to those implied by Eqs. (2.18) and (2.19) with finite P . For all BVM and
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analytic approximations Ḡanaly in Eq. (3.1). In panel (d) we show color
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4.1 Schematic views of our hydrophobic shape model for chemoreceptor
trimers. The molecular model of the chemoreceptor trimer in panel (a) is
taken from Ref. [45] and the adjacent clover boundary curve was derived
from Eq. (2.17) with Ron/off = 3.1 nm, son/off = 3, and ϵon/off = 0.2 for both
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4.4 Estimates of the lipid bilayer deformation contribution to the chemoreceptor
activation energy obtained using Eq. (2.3) with τ = 0, are depicted for
(a) DOPC and (b) EcoC membranes, as a function of temperature. Solid
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trimer cross-section shape model described in Sec. 4.2.1, while dashed
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trimer on and off states possessing equivalent cross-section areas to
the corresponding clover cross-section shapes. The color legend below
the panels indicates which parameters (a, Kℓ

b , or Kt) were assigned the
temperature relations in Eqs. (4.1)–(4.3) for DOPC lipid bilayers [116]
and, by omission, which of these parameters were held constant at
their respective values at room temperature Trm = 25◦C. In (b) EcoC
membranes, a was modified using a0 = 2.45 nm in Eq. (4.1). In panel
(b), the lightly shaded region depicts the clover model solutions, with a
50% variation in m in Eq. (4.1), and the overlapping darker shaded region
represents solutions with variations in ε by 50%. . . . . . . . . . . . . . . . . 88
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the corresponding clover cross-section shapes. The color legend below
the panels indicates which parameters (a, Kℓ

b , or Kt) were assigned the
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4.6 In panels (a,b), we depict estimates of MscL’s activation energy in Eq. (4.5)
in an EcoC membrane as a function of temperature, where we set the
membrane tension τ to the values indicated by the color legend beneath
panel (c). In panels (b,d) we show the opening channel probability in
Eq. (4.4) for MscL in an EcoC membrane as a function of τ , where we set
the temperature T to the values indicated in the color legend underneath
panel (d), and the shaded regions. The shaded regions in panels (b,d)
denote the range of solutions for 50% variations in m in Eq. (4.1) and ε
in Eq. (4.2) as indicated in the greyscale legend underneath panel (d).
In panels (a,b) we set Woff = Won = 3.8 nm, and in panels (c,d) we set
Woff = 3.8 nm and Won = 2.5 nm in Eq. (2.13). In panels (a,b) we set
∆Gp = 55 kBTrm, and in panels (c,d) we set ∆Gp = 0 in Eq. (4.5). . . . . . . 95
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ℓ , (b) the change in the
energy associated with the change in the Piezo dome’s in-plane bilayer
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(d), we used ∆G(T ) = ∆GM
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ℓ,cap(T ) + ∆Gb
p,cap(T ). . . 96

4.8 Estimates of channel opening probability in Eq. (4.4) for Piezo as a
function of membrane tension and at the indicated values of temperature
T , assuming (a) Kp

b (T ) = 20 kBTrm, (b) Kp
b (T ) = Kℓ

b(T ), and (c)
Kp

b (T ) = Kℓ
b(2ε → ε, T ), with Kb(T ) calculated by Eq. (4.2). To evaluate

∆G = ∆GM
ℓ + ∆Gτ

ℓ,cap + ∆Gb
ℓ,cap + ∆Gb

p,cap in Eq. (4.4) we followed the
caption of Fig. 4.7 to calculate all of its various contributions. The shaded
regions denote the range of solutions that include 50% variations in ε about
ε = 7 × 10−21 J at the temperatures indicated by the color legend in each
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xxiii



5.1 Table comparing experimental data on emerin [12] (orange) and predictions
of our reaction-diffusion model (emerin nanodomain diameter, ℓΦ, and
ratio of the fraction of emerin nanodomain area covered by I and A
complexes relative to that of the wild type system under no mechanical
stress, FΦ/F

WT
Φ ) (red) for the various emerin systems in Fig. 5.2 and

the ∆95-99 system under no mechanical stress. For ∆95-99 systems
under no mechanical stress, emerin nanodomains were not observed to
self-assemble in experiments [12] and were not predicted to self-assemble
by our model. So, for the ∆95-99 system under no mechanical stress, we
specify “null" for FΦ/F

WT
Φ and ℓΦ. . . . . . . . . . . . . . . . . . . . . . . . . 126
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Abstract

Over recent years, a diverse range of experiments have provided much quantitative

data on the role of membrane proteins in cellular signal transduction and the adaptation

of cells to dynamic environments. Membrane proteins exhibit diverse molecular mecha-

nisms for sensing stimuli, initiating signaling pathways through structural changes, and en-

gaging in collective signaling activities. In particular, protein clustering into domains dedi-

cated to specialized functions provides important mechanisms for cell membrane organi-

zation. Furthermore, the perturbation of the lipid bilayer by membrane proteins is thought

to play an important role in membrane protein function. This thesis comprises a set of in-

terconnected studies that employ theoretical physics to investigate fundamental aspects

of the intricate coupling between membrane proteins and cellular responses to stimuli.

Chapter 1 provides a general introduction to cell membranes, membrane proteins, and the

diverse functions they serve in cell membranes, and as well as the theory of membrane

mechanics. Chapter 2 introduces a novel boundary value method (BVM) that bridges

structural biology with membrane elasticity theory, enabling the analytic determination of

protein-induced lipid bilayer deformations, even for non-circular protein cross-sections, in

xxvi



excellent agreement with finite element solutions. Inspired by our BVM, Chapter 3 formu-

lates a simple analytic approximation of the bilayer thickness deformation energy asso-

ciated with general protein shapes and shows that, for modest deviations from rotational

symmetry, this analytic approximation is in good agreement with BVM solutions. The BVM

and analytical approximation are utilized to explore how variations in protein shape influ-

ence elastic bilayer thickness deformations. Our findings reveal that alterations in protein

shape induce changes to the lipid bilayer deformation energy exceeding 10 kBT , which

may have important implications for protein conformational changes and protein oligomer-

ization processes. Chapter 4 examines the interplay between membrane mechanics and

thermosensing, revealing how, mediated by lipid bilayer properties such as hydrophobic

thickness and bending rigidity, temperature changes influence the conformational transi-

tions of membrane proteins. We thus investigate the fundamental principles underlying

the coordination of thermosensing and mechanosensing in living systems. Chapter 5 ex-

plores the physical principles underlying the self-assembly of emerin nanodomains at the

inner nuclear membrane, which may shed new light on the role of emerin nanodomains

in mechanotransduction. By employing a comprehensive modeling approach rooted in

the Turing mechanism of nonequilibrium pattern formation, we develop a simple model

quantifying the intricate reaction-diffusion properties of proteins and their nuclear bind-

ing partners. On this basis, we provide insight into the wild-type properties of emerin

nanodomains and their response to applied forces, as well as the mechanisms underly-

ing the observed defects in the self-assembly of emerin nanodomains for mutated forms

of emerin associated with Emery-Dreifuss muscular dystrophy. Chapter 6 provides an

overview and conclusions from our studies, and suggests potential future directions of
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research inspired by our findings. By integrating these diverse research strands, our work

contributes to a deeper understanding of the fundamental principles governing membrane

mechanics and pattern formation, with implications for both physics and biology.
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Chapter 1

Introduction

This chapter provides an introduction to the research topics addressed in this PhD

thesis. We start by exploring the fundamental components of cell membranes in Sec-

tion 1.1. In Section 1.2, we dive into various intricate aspects of transmembrane proteins

in cell membranes, including their influence on membrane shape (Section 1.2.1), their

responsiveness to physical stimuli such as temperature (Section 1.2.2), and their collec-

tive response to mechanical stress (Section 1.2.3). Finally, Section 1.3 motivates the

boundary value method (BVM) for calculating protein-induced membrane deformations

developed as part of this PhD thesis.

1.1 Proteins and phospholipids: the building blocks of

cell membranes

Cell membranes maintain cellular integrity, and serve as dynamic barriers for nutrient,

signal, and waste exchange with the external environment [1]. Comprising membrane
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Figure 1.1: Illustration (from Ref. [3]) depicting various membrane proteins within lipid
bilayer environments.

proteins and phospholipids, these structures facilitate vital cellular functions. Phospho-

lipids form bilayers that interlock with membrane proteins, as illustrated in Figure 1.1,

ensuring structural integrity, while membrane proteins govern essential processes such

as ion transport, signal transduction, and membrane shape regulation [2].

Phospholipids possess an amphiphilic nature, with hydrophobic tail chains repelling

water and hydrophilic head groups favorably interacting with it [4]. This amphiphilic prop-

erty drives the self-assembly of lipid aggregates when introduced into an aqueous en-

vironment. The specific type of lipid aggregate formed depends on factors such as hy-

drocarbon chain characteristics, ionic conditions, and temperature. For instance, double-

chained lipids with a large head group area tend to prefer, energetically, bilayer structures.

These self-assembled lipid aggregates typically exhibit characteristic lateral sizes on the

order of magnitude of micrometers while being only a few nanometers in the thickness.
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Transmembrane proteins exhibit a consistent structural framework composed of three

fundamental constituents [5]. First and foremost, the transmembrane segments are piv-

otal for anchoring the protein within the membrane. These segments traverse the lipid

bilayer, showing hydrophobic amino acid residues that establish favorable interactions

with the hydrophobic core of the lipid bilayer. Their role extends to providing structural

stability and ensuring the protein’s secure integration within the lipid bilayer. Further-

more, membrane proteins encompass extracellular domains that project into the external

environment. These domains frequently serve as sites for interactions with neighboring

cells, specific ligands, or extracellular molecules. Consequently, membrane proteins ac-

tively engage in essential processes such as cell signaling, adhesion, and recognition,

contributing significantly to cellular function [6, 7]. In addition to extracellular domains,

intracellular domains project into the cellular interior. These segments play multifaceted

roles, often involving intracellular signal transduction and interactions with various com-

ponents within the cell. Intriguingly, they can also be instrumental in anchoring the protein

to the cell’s cytoskeleton, thereby enhancing the protein’s structural stability.

It is noteworthy that the precise composition and arrangement of the above constituent

elements of membrane proteins can exhibit substantial variations among different mem-

brane proteins. This diversity allows membrane proteins to fulfill a wide spectrum of

functions, underscoring their significance in various cellular processes. A profound un-

derstanding of the structural organization of membrane proteins is indispensable for un-

raveling their contributions to cellular functions and the maintenance of cell membrane

integrity.
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1.2 Coordinators of cellular responses: the multifaceted

functions of transmembrane proteins

The strategic placement of transmembrane proteins empowers them to fulfill a wide

range of functions, including cellular gatekeeping activities such as the regulation of

molecular transport, and pivotal roles as receptors for various signaling pathways [4].

A primary function of transmembrane proteins is the precise regulation of molecular

transport across cell membranes [4, 8]. This function is facilitated by various types of

transmembrane proteins, including ion channels, transporters, and pumps, responsible for

maintaining the delicate balance of ions, small molecules, and nutrients inside and outside

the cell. They act as gatekeepers, controlling the passage of substances to ensure the

proper functioning of cellular processes. For example, ion channels enable the controlled

flow of ions, which is vital for maintaining the electrochemical balance necessary for nerve

impulses and muscle contraction.

Beyond their gatekeeping duties, transmembrane proteins also serve as primary re-

ceptors for numerous signaling pathways, as illustrated in Figure 1.2, allowing cells to

detect and respond to various external stimuli [4, 6, 9]. Upon binding specific ligands,

such as hormones or neurotransmitters, transmembrane receptors initiate cascades of

intracellular events, culminating in the activation of essential cellular processes, such as

gene expression, cell growth, and differentiation. Conformational changes triggered by

ligand binding enable the transmission of signals across the cell membrane, ensuring the

coordination of complex cellular activities.
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Figure 1.2: Illustration (adapted from Ref. [10]) depicting a transduction process initiated
by a transmembrane protein. In particular, in this illustration, a signaling molecule binds
to a receptor protein in the plasma membrane seperating the cell’s cytoplasm from the
extracellular environment, which sets off a signal transduction pathway leading to a re-
sponse that involves the activation of cellular process.

Moreover, transmembrane proteins contribute to the organization of specialized mem-

brane domains critical for cellular signal transduction [11, 12]. Through their collective

actions, these proteins form defined clusters or domains within the cell membrane, facili-

tating the initiation of intricate signaling pathways and the recruitment of various signaling

molecules. This protein clustering enables the efficient coordination of cellular responses

to diverse environmental stimuli, ensuring the proper regulation of cellular processes, in-

cluding adaptation to mechanical stress. Some notable examples are synaptic protein
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Figure 1.2: Illustration (adapted from Ref. [10]) depicting a transduction process initiated
by a transmembrane protein. In particular, in this illustration, a signaling molecule binds
to a receptor protein in the plasma membrane seperating the cell’s cytoplasm from the
extracellular environment, which sets off a signal transduction pathway leading to a re-
sponse that involves the activation of cellular process.

Moreover, transmembrane proteins contribute to the organization of specialized mem-

brane domains critical for cellular signal transduction [11, 12]. Through their collective

actions, these proteins form defined clusters or domains within the cell membrane, facili-

tating the initiation of intricate signaling pathways and the recruitment of various signaling

molecules. This protein clustering enables the efficient coordination of cellular responses

to diverse environmental stimuli, ensuring the proper regulation of cellular processes, in-

cluding adaptation to mechanical stress. Some notable examples are synaptic protein

domains in neuronal membranes, which regulate synaptic transmission essential for cog-

nitive function and learning, and inner nuclear membrane (INM) emerin nanodomains in

mammalian cells, which facilitate the regulation of signals between the nucleoskeleton

and the cytoskeleton vital for cellular adaptation to mechanical stress.
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Transmembrane proteins also play a significant role in detecting physical stimuli, re-

sponding to mechanical forces, temperature changes, and osmotic pressure variations

[8, 12, 13]. In particular, transmembrane proteins can undergo conformational changes

in response to these stimuli, activating various cellular processes and signaling cascades

[6, 14–16]. By sensing alterations in the cell’s external environment, transmembrane pro-

teins contribute to maintaining cellular homeostasis, enabling cells to adapt and respond

to environmental fluctuations.

The multifaceted functionality of transmembrane proteins underscores their indispens-

able role in maintaining cellular homeostasis and regulating complex cellular processes.

Their intricate structural arrangement within the cellular membrane enables them to act

as gatekeepers for molecular transport, as receptors for various signaling pathways, and

as sensors for physical stimuli, ensuring cells can adapt and respond to environmental

changes. The collective behavior of transmembrane proteins in forming specialized do-

mains plays a critical role in efficiently regulating cellular function and maintaining cellular

integrity. Understanding the intricate functionality of transmembrane proteins offers valu-

able insights into the complex mechanisms governing cellular life and may lead to the

development of novel therapeutic strategies for various diseases and disorders.

1.2.1 The influence of membrane proteins on membrane shape

Membrane proteins spanning the lipid bilayer are characterized by large hydrophobic

regions that approximately match up with the thickness of the lipid bilayer hydrophobic
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core [1, 4, 17–20]. However, distinct membrane proteins often show distinct hydropho-

bic thicknesses, and transitions in protein conformational state can change the protein’s

hydrophobic thickness. Figure 1.3, for instance, illustrates the gating of the mechanosen-

sitive ion channel of large conductance (MscL), for which the change in protein shape is

thought to impact the lipid bilayer hydrophobic thickness of the surrounding membrane

area. Moreover, the lipid composition in cell membranes tends to be highly heteroge-

neous, with distinct lipids often showing distinct unperturbed lipid bilayer thicknesses. As

a result, membrane proteins are generally expected to show a (modest) hydrophobic mis-

match with the surrounding lipid bilayer, resulting in protein-induced lipid bilayer thickness

deformations [21–31]. Membrane proteins may also deform the lipid bilayer membrane

without perturbing the lipid bilayer thickness [32–38] as, for instance, in the case of bi-

layer midplane (curvature) deformations (see Appendix. B.1). The energy cost of such

protein-induced lipid bilayer deformations depends on the protein shape and conforma-

tional state, the lipid composition, membrane mechanical properties such as membrane

tension, as well as membrane organization, and can thus regulate, or even determine,

membrane protein function. Membrane elasticity theory provides a beautiful framework

for the quantitative description of protein-induced lipid bilayer deformations with, at least

in the most basic models, all physical parameters being determined directly from exper-

iments [21–25, 27–34, 36–40]. As a result, membrane elasticity theory yields definite

predictions for the energy cost of protein-induced lipid bilayer deformations and, hence,

the coupling between lipid bilayer mechanics and membrane protein function, allowing

direct comparisons between theoretical predictions and experimental measurements.
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Figure 1.3: Illustration (from Ref. [41]) depicting the change in lipid bilayer hydrophobic
thickness as MscL transitions from its closed state to its opened state.

Over the past two decades, breakthroughs in membrane protein crystallography and,

more recently, cryo-electron microscopy have yielded enormous insight into the shape

of membrane proteins [42–53]. Despite the large diversity in protein shape revealed by

these experiments, mathematical difficulties associated with the description of protein-

induced lipid bilayer deformations for general protein shapes have meant that the elastic-

ity theory of bilayer-protein interactions has largely been limited to idealized, rotationally

symmetric protein shapes. However, membrane protein shape may have important con-

sequences for membrane morphology, membrane elastic properties, membrane curva-

ture sensing and mechanosensing, the lateral organization and orientation of membrane

proteins, bilayer-mediated protein interactions, and the regulation of protein function [30,
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54–61]. This PhD thesis aims to address these issues by providing a versatile mathemat-

ical methodology allowing for the description of bilayer-protein interactions for the protein

shapes observed in structural studies (see Chapters 2 and 3).

1.2.2 Temperature sensing in cells: the convergence of membrane

mechanics and function

Living organisms are inherently attuned to their ever-changing surroundings, relying

on a plethora of environmental cues to orchestrate vital biological processes. Among

these cues, temperature is a crucial factor, exerting a significant influence on cellular

physiology. The capacity to detect and respond to temperature variations is essential

for survival, enabling organisms to thrive in diverse thermal environments. For instance,

many cells employ temperature as a critical determinant in decision-making processes.

Many microorganisms utilize temperature as a cue for optimal growth conditions, adjusting

not only their metabolic activities but also their motion to flourish within specific thermal

niches [13, 62–69]. Moreover, extreme cold temperatures can inhibit vital cellular pro-

cesses, leading organisms to employ thermosensory mechanisms to evade or adapt to

adverse conditions [70–79]. Conversely, excessive high temperatures can pose a se-

vere threat to cell viability, necessitating rapid responses to mitigate the damaging effects

of extreme warmth [16, 80–84]. In recent decades, a diverse range of experiments have

significantly advanced our understanding of how organisms perceive and respond to envi-

ronmental cues, particularly temperature fluctuations. This progress has been punctuated
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by the identification of key molecular players, including temperature and touch transmem-

brane protein sensors, that play pivotal roles in these sensory processes. While these

insights have provided valuable pieces of the puzzle, the precise physical mechanisms

governing temperature sensing at the molecular level continue to be elusive.

In recent decades, extensive research has uncovered the mechanical properties of

cellular membranes, revealing a coupling between protein function and membrane me-

chanics [8, 14, 15, 22, 23, 27, 38, 46, 47, 49, 59, 85–112]. These specialized proteins,

often called mechanosensors, couple to membrane mechanical properties such as mem-

brane thickness and rigidity. Additionally, various lines of experimental research suggest

that biological membranes, typically considered soft materials, exhibit substantial changes

as temperatures rise, making them easier to deform and thinner [15, 113–117]. While our

quantitative understanding of the effect of temperature changes on membrane deformabil-

ity continues to evolve, available evidence, albeit limited, permits a basic quantification of

the relationship between temperature and membrane mechanical properties within physi-

ologically relevant temperature ranges. As we shall discuss in this thesis (see Chapter 4),

this interplay between protein functionality and membrane mechanics, influenced by tem-

perature, suggests that cells might possess the inherent capacity to detect temperature

variations through membrane mechanics. On this basis, we develop a basic framework

allowing quantification of the potential consequences of temperature fluctuations on mem-

brane mechanics and protein conformational states. In the scope of our investigation,

membrane elasticity theory [21, 23, 27, 32–34, 59, 102, 118, 119], which we discuss in

Chapter 2, serves to establish a direct link between the mechanics of the lipid bilayer and

the functional behavior of membrane proteins. Notably, different conformational states
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of membrane proteins often yield distinct protein-induced membrane deformations, with

resultant changes in the energy of bilayer-protein interactions. On this basis, we em-

ploy membrane elasticity theory to connect measured temperature-dependent changes

in bilayer mechanical properties to transitions in protein conformational state.

1.2.3 Collective protein behavior in specialized membrane domains

Proteins, both individually and collectively, are fundamental for a cell’s ability to sense

and respond to physical stimuli. An example of this is the organized clustering of pro-

teins into specialized domains, a prevalent occurrence in cells. These protein-rich do-

mains, composed of an assortment of proteins, often act as hubs for specific cellular

functions. Take neurons, for instance. Neuron synaptic protein domains trigger com-

plex signal pathways, transmitting information through neurotransmitter release, receptor

binding, synaptic function, vesicle recycling, structural integrity, and material transport,

ultimately supporting learning, memory, and neural communication [9, 11, 120–122]. The

precise arrangement and organization of these domains are critical for dynamic and reg-

ulated synaptic communication. Any disruption or dysregulation in this intricate protein

network can lead to various neurological disorders and cognitive impairments. In our ex-

ploration of collective protein behavior, we place a specific focus on the self-assembly of

emerin nanodomains located at the INM and their role in initiating signaling pathways in

response to mechanical stress.

Emerin, a nuclear membrane protein within mammalian cells, is a fundamental com-

ponent of the INM [12]. It plays a pivotal role in mechanotransduction, as illustrated in
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Figure 1.4, a process through which mechanical forces are detected and converted into

biochemical signals. This function is intricately connected to emerin’s role as a key link

between the plasma membrane, the cytoskeleton, and the nucleoskeleton.

Emerin is a key component of the Linker of Nucleoskeleton and Cytoskeleton (LINC)

complex. This complex acts as a bridge, connecting the nuclear lamina inside the nucle-

oplasm to the cytoskeleton on the cytoplasmic side. The LINC complex has the ability

to sense and relay mechanical signals from the plasma membrane to the cell nucleus,

which, consequently, can be perceived by emerin.

Emerin can affect gene expression involved in the processes of mechanotransduc-

tion. For example, by influencing genes such as β-catenin and Lmo7, emerin can affect

cytoskeletal dynamics and cell shape [123–126]. Numerous studies have highlighted

the significance of emerin’s intrinsically disordered region in performing many of its vital

functions. This structural flexibility allows emerin to adopt various conformations, form

oligomers, and engage with multiple partners at the INM [12, 127–139]. Mutations in

emerin or its absence have been correlated with abnormal responses of the nuclear en-

velope to mechanical stress, ultimately resulting in Emery-Dreifuss muscular dystrophy

(EDMD).

A recent study utilizing single-molecule tracking and super-resolution fluorescence

microscopy has provided intriguing insights into the steady-state distributions and mo-

bilities of wild-type and mutated emerin at the INM under various conditions, including

mechanical stress [12]. In particular, these experiments revealed two distinct distributions

of emerin species at the INM, slow and fast diffusers, and that emerin generally forms
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Figure 1.4: Schematic (from Ref. [12]) depicting the reorganization of emerin at the NE in
response to mechanical stress. Increased lateral mobility at the INM is initiated by emerin
monomer unbinding from nuclear actin and BAF, facilitating LEM domain interactions with
binding sites along the intrinsically disordered region of other emerin molecules. This
controlled process leads to the formation of emerin oligomers at SUN1 LINC complexes,
subsequently stabilized by lamin A/C.
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stable nanodomains of elevated emerin concentrations which are maintained through in-

teractions with emerin and other nuclear binding partners (NBPs) [e.g., SUN1, lamin A/C,

barrier-to-autointegration factor (BAF), and nuclear actin]. Mutations of emerin and me-

chanical stress were found to perturb the distributions of emerin and its oligomerization

potential.

The INM spatial pattern of emerin nanodomains of increased concentrations and the

distinction between slower and faster diffusing emerin species resembles the properties

of molecular domains self-assembled through a Turing mechanism in an activator-inhibitor

reaction-diffusion model [9, 11, 120–122, 140–144]. In this model, inhibitors, which dif-

fuse rapidly, act to restrain increased molecular concentrations via steric constraints. On

the other hand, activators diffuse at a slower pace compared to inhibitors but activate el-

evated molecular concentrations of both inhibitors and other activators. In Chapter 5, we

show that the self-assembly of stable emerin nanodomains may be attributed to the self-

stabilization of slow-diffusing, activating emerin-complexes and fast-diffusing, inhibiting

emerin-complexes at the INM, coupled with the steric repulsion of the inhibitors.

1.3 Shortcomings of former approaches for calculating

protein-induced lipid bilayer deformations

While it is relatively straightforward to derive analytical solutions for bilayer deforma-

tions induced by idealized proteins with approximately circular cross-sections [4], struc-

tural biology has revealed that membrane proteins often deviate significantly from this
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Figure 1.5: Diagrams (from Ref. [145]) of the general system domain discetization
schemes utilized in (a) BVM, (b) FDM, and (c) FEM [145].

intricately shaped system domains, necessitating a substantial number of elements or grid

points for high accuracy. Implementing parallelized computing structures to handle such

situations can help to alleviate these issues but adds complexity to the process. These

challenges become particularly evident when dealing with bilayer deformations with large

decay lengths, demanding extensive computational resources and often rendering FEM

and FDM impractical.

BVM solutions, characterized by their focus on boundary conditions and minimal dis-

cretization [see Fig. 1.5(a)], offer several distinct advantages over FEM and FDM. Notably,
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idealized shape. As a result, a more precise assessment of protein-induced bilayer de-

formations, incorporating the complex protein shapes observed in structural biology, typ-

ically relies on numerical methods. In previous studies [30], both finite element methods

(FEM) and finite difference methods (FDM) have been employed to address bilayer defor-

mations caused by proteins of arbitrary shapes. However, these methods show various

limitations and, in some cases, are unable to provide accurate solutions. The BVM de-

veloped in this thesis (see Chapter 2) provides an alternative approach for calculating

protein-induced bilayer deformations, and allows accurate calculation of protein-induced

bilayer deformations for proteins with arbitrary shape. Our investigation reveals that the

BVM offers several advantages over FEM and FDM when it comes to addressing lipid

bilayer deformations.

FEM is a versatile numerical technique employed to solve partial differential equations

by dividing the computational domain into smaller elements, often triangular in shape

[see Fig. 1.5(c)]. It excels in addressing complex problems characterized by intricate ge-

ometries, diverse material properties, and complex boundary conditions. However, FEM
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can be computationally intensive, particularly when dealing with numerous elements due

to large sized systems and complex boundary geometries. Its implementation often de-

mands expertise in tasks such as mesh generation, element selection, and boundary

condition specification to achieve exceptional accuracy. It is noteworthy that, in the case

of protein-induced lipid bilayer deformations, standard FEM software is often not suitable,

as it requires a non-standard approach [30]. Conversely, FDM adopts a grid-based ap-

proach, discretizing the domain and approximating derivatives using finite differences [30]

[see Fig. 1.5(b)]. FDM, like FEM, produces limited success when dealing with large and

intricately shaped system domains, necessitating a substantial number of elements or grid

points for high accuracy. Implementing parallelized computing structures to handle such

situations can help to alleviate these issues but adds complexity to the process. These

challenges become particularly evident when dealing with bilayer deformations with large

decay lengths, demanding extensive computational resources and often rendering FEM

and FDM impractical.

BVM solutions, characterized by their focus on boundary conditions and minimal dis-

cretization [see Fig. 1.5(a)], offer several distinct advantages over FEM and FDM. Notably,

their simplicity in problem setup is a key strength. BVM involves the definition of bound-

ary conditions, which are often known in advance, reducing the necessity for an extensive

grid or mesh. This streamlined process enhances computational efficiency and simplifies

implementation. In the context of bilayer deformations, BVM excels in scenarios where

significant bilayer deformation attenuation lengths are expected. This advantage arises

from BVM’s discretization scheme, which relies solely on the boundary geometry rather

than the size of the system enclosed by the boundary, a key contrast with FEM and FDM.
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Consequently, BVM imposes a considerably lighter computational load. Another distinc-

tive feature of BVM is its capacity to yield analytic solutions, in contrast to the numerical

solutions provided by FEM and FDM.

Nonetheless, the very simplicity that makes BVM advantageous can, in certain sce-

narios, become a constraint. Its strong computational reliance on boundary shape can

result in significant requirements on computational resources, such as situations involving

many proteins. In such instances FEM, which tends to show a computational efficiency

that is only mildly dependent on boundary geometry, is the optimal choice. In Chapter 2

we demonstrate, through rigourous benchmarks, that for many of the types of protein

shapes observed in structural biology, a BVM, often effortlessly, generates accurate ana-

lytic (if complicated) solutions for the protein-induced lipid bilayer deformations and their

associated energies.
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Chapter 2

A boundary value method for lipid bilayer deformations

The objective of this chapter is to develop, describe, and test a straightfoward and

easy to implement BVM suited for the construction of analytic solutions of protein-induced

lipid bilayer deformations for protein shapes with arbitrarily large deviations from a circu-

lar cross section. This BVM allows for constant as well as variable boundary conditions

along the bilayer-protein interface. In particular, we consider here, as test cases for the

BVM, four generic classes of protein shapes breaking the rotational symmetry of protein-

induced lipid bilayer thickness deformations, which are illustrated in Fig. 2.1. Inspired by

observed molecular structures of membrane proteins [5, 146], we consider two classes

of non-circular membrane protein cross sections: Clover-leaf [see Fig. 2.1(a)] and polyg-

onal [see Fig. 2.1(b)] protein shapes. Furthermore, we allow for variations in the bilayer-

protein hydrophobic mismatch [see Fig. 2.1(c)] as well as in the bilayer-protein contact

slope [see Fig. 2.1(d)] along the bilayer-protein interface. Such variations in the bilayer-

protein boundary conditions can arise, on the one hand, as inherent features of the protein

structure or, on the other hand, as a result of, for instance, the binding of small peptides,

such as spider toxins, or other molecules along the bilayer-protein interface [5, 22, 146,
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3

FIG. 1: Surface views of thickness deformation induced by a bilayer membrane embedded protein of cylindrical shape. (a) Isometric
view. (b) Lateral view.

it is therefore convenient to represent the positions of
the two lipid bilayer leaflets in the Monge parametriza-
tion of surfaces, h± = h±(x, y), with Cartesian coordi-
nates (x, y) (see Fig. 2). Furthermore, it is instructive to
express h+(x, y) and h�(x, y) in terms of the midplane
deformation field h = h(x, y),

h =
h+ + h�

2
, (1)

and in terms of the thickness deformation field u =
u(x, y),

u =
h+ � h� � 2a

2
, (2)

where a is one-half the unperturbed lipid bilayer thick-
ness (Fig. 2). The value of a depends on, for instance,
the tail length of the lipid species under consideration,
and can be measured directly in experiments [3, 24, 27].

The membrane elasticity theory describing the shape

Figure 2.1: Protein-induced lipid bilayer thickness deformations for selected families of
protein shapes: (a) Clover-leaf protein cross section with five-fold symmetry, constant
protein hydrophobic thickness, and zero bilayer-protein contact slope, (b) polygonal pro-
tein cross section with six-fold symmetry, constant protein hydrophobic thickness, and
constant bilayer-protein contact slope U ′ = 0.3, (c) clover-leaf protein cross section with
three-fold symmetry, a five-fold symmetric (sinusoidal) variation in protein hydrophobic
thickness, and zero bilayer-protein contact slope, and (d) polygonal protein cross sec-
tion with seven-fold symmetry, constant protein hydrophobic thickness, and a three-fold
symmetric (sinusoidal) variation in the bilayer-protein contact slope. The color map and
purple surfaces show the positions of the upper and lower lipid bilayer leaflets, respec-
tively. The bilayer-protein boundaries are color-coded according to their symmetries (see
also Fig. 2.3 in Sec. 2.1). For panels (a) and (c) we used ϵ = 0.2 and ϵ = 0.3 in Eq. (2.17),
respectively, and for panels (b) and (d) we used P = 5 in Eqs. (2.18) and (2.19). All bilayer
surfaces were calculated using the reference parameter values in Sec. 2.1 and the BVM
for protein-induced lipid bilayer thickness deformations described in Sec. 2.2.

147]. For each of these four classes of protein shapes we use the BVM to obtain the

energy cost of protein-induced lipid bilayer thickness deformations, and test these results

against corresponding numerical solutions obtained through the FEM for bilayer thickness

deformations [30, 60, 61]. Our BVM reproduces available analytic solutions for proteins
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with circular cross section and yields, for proteins with non-circular cross section, excel-

lent agreement with the numerical, finite element solutions. Crucially, our BVM does not

suffer from the membrane areal domain size limitations exhibited by FEM and FDM, with

a computational demand that only scales with the complexity of the bilayer boundary ge-

ometry, making it the preferred choice for addressing bilayer deformations with potentially

long decay lengths.

This chapter is organized as follows. Section 2.1 summarizes the elasticity theory of

protein-induced lipid bilayer thickness deformations. In Sec. 2.2 we describe in detail the

BVM for bilayer thickness deformations, test this BVM against FEM solutions, and discuss

how the BVM can be used to calculate protein-induced lipid bilayer thickness deforma-

tions, and their associated elastic energy, for general protein shapes. We summarize the

conclusions of our work and discuss limitations and further potential applications of our

BVM in Sec. 6.1.

2.1 Modeling protein-induced lipid bilayer thickness de-

formations

The preferred hydrophobic thickness of lipid bilayers depends strongly on the lipid

chain length [1, 4, 17–20] while different membrane proteins, and even different conforma-

tional states of the same membrane protein, often have distinct hydrophobic thicknesses.

For membrane proteins that offer a rigid interface to the lipid bilayer and show a mod-

est hydrophobic mismatch with the unperturbed lipid bilayer, the lipid bilayer thickness is
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expected to deform in the vicinity of the membrane protein so as to achieve hydropho-

bic matching at the bilayer-protein interface [21–31]. The resulting protein-induced lipid

bilayer thickness deformations can result in a pronounced dependence of the protein con-

formational state, and protein function, on lipid chain length [14, 23, 102, 118, 148, 149].

The purpose of this section is to summarize the elasticity theory of protein-induced lipid

bilayer thickness deformations [21–25, 27–30, 39, 58, 59]. We first outline the standard

elasticity theory of lipid bilayer thickness deformations (see Sec. 2.1.1). We then describe

how protein shape couples to lipid bilayer thickness, and discuss the models of protein

shape considered in Chapters 2–4 (see Sec. 2.1.2).

2.1.1 Continuum elasticity theory of lipid bilayer deformations

Lipid bilayer thickness deformations tend to decay rapidly, with a characteristic decay

length ≈ 1 nm [22, 28]. When modeling protein-induced lipid bilayer thickness deforma-

tions it is therefore convenient to represent the positions of the two lipid bilayer leaflets in

the Monge parameterization of surfaces, h± = h±(x, y), with Cartesian coordinates (x, y)

(see Fig. 2.2). It is instructive to express h+(x, y) and h−(x, y) in terms of the midplane

deformation field h = h(x, y),

h =
h+ + h−

2
, (2.1)

and in terms of the thickness deformation field u = u(x, y),

u =
h+ − h− − 2a

2
, (2.2)
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3

troduced by the Bessel functions in our deformation field
expressions and software to curve these issues and opti-
mize our code’s speed in C++. We also give approxi-
mate ranges of protein shapes for which double precision
floating point numbers are su�cient for the BVM to ac-
cumulate negligible floating point error. In appendix B,
we discuss optimizing the BVM through adaptive point
distributions and how the optimization is dependent on
the protein shape and the number of terms used to ap-
proximate the deformation field.

FEM di�cult to implement for general protein shapes
with varying boundary conditions.

II. MODELING PROTEIN-INDUCED BILAYER
THICKNESS DEFORMATIONS

The preferred hydrophobic thickness of lipid bilayers
depends strongly on the lipid tail length [21–24] while
di↵erent membrane proteins, and even di↵erent con-
formational states of the same membrane protein, of-
ten have distinct hydrophobic thicknesses. Since mem-
brane proteins do, in general, o↵er a rigid interface to
the lipid bilayer, the lipid bilayer thickness tends to
deform in the vicinity of membrane proteins so as to
achieve hydrophobic matching at the bilayer-protein in-
terface [3, 10, 19, 25–27]. The resulting protein-induced
lipid bilayer thickness can result in a pronounced depen-
dence of protein conformational state, and protein func-
tion, on lipid tail length [5, 10, 19, 28–30]. The pur-
pose of this section is to summarize the elasticity theory
of protein-induced lipid bilayer thickness deformations
[3, 6, 10, 16, 25, 26, 31]. We first summarize the standard
elasticity theory of lipid bilayer thickness deformations
(see Sec. II A). In Sec. II B we then describe how protein
shape couples to lipid bilayer thickness, and discuss the
models of protein shape considered in this article.

A. Elasticity theory of bilayer thickness
deformations

Bilayer thickness deformations tend to decay rapidly,
with a typical decay length ⇡ 1 nm [27, 31]. When model-
ing protein-induced lipid bilayer thickness deformations,
it is therefore convenient to represent the positions of
the two lipid bilayer leaflets in the Monge parametriza-
tion of surfaces, h± = h±(x, y), with Cartesian coordi-
nates (x, y) (see Fig. ??). Furthermore, it is instructive
to express h+(x, y) and h�(x, y) in terms of the midplane
deformation field h = h(x, y),

h =
h+ + h�

2
, (1)

and in terms of the thickness deformation field u =
u(x, y),

u =
h+ � h� � 2a

2
, (2)

FIG. 2: Surface views of thickness deformation induced by a
bilayer membrane embedded protein of cylindrical shape. (a)
Isometric view. (b) Lateral view.

where a is one-half the unperturbed lipid bilayer thick-
ness (Fig. ??). The value of a depends on, for instance,
the tail length of the lipid species under consideration,
and can be measured directly in experiments [3, 24, 27].

The membrane elasticity theory describing the shape
of lipid bilayers [2, 32–34] dates back to the classic work
of W. Helfrich [7], P. B. Canham [35], E. A. Evans [36],
and H. W. Huang [10]. Interestingly, one finds that the
elastic energies governing h and u in Eqs. (1) and (2)
decouple from each other to leading order [6, 37]. In
the most straightforward model of bilayer-protein in-
teractions [3, 10, 16, 17, 25–27, 32–34, 38], the energy
cost of protein-induced bilayer midplane deformations
is then captured by the Helfrich-Canham-Evans energy
[7, 35, 36], and the energy cost of protein-induced bilayer
thickness deformations is given by [3, 6, 10, 16, 25, 26, 31]

G =
1

2

Z
dxdy


Kb

�
r2u

�2
+ Kt

⇣u

a

⌘2
�

, (3)

where the integral runs over the (in-plane) lipid bilayer
surface, Kb is the lipid bilayer bending rigidity, and Kt is

Figure 2.2: Notation used for the calculation of protein-induced lipid bilayer thickness de-
formations in (a) angled and (b) side views. As an example, we consider here a membrane
protein with a non-circular (clover-leaf) bilayer-protein boundary curve, C(θ), constant hy-
drophobic thickness, W (θ) = W0, and zero bilayer-protein contact slope, U ′(θ) = 0. The
positions of the upper and lower lipid bilayer leaflets are denoted by h+ and h−, from which
the bilayer midplane and bilayer thickness deformation fields h and u can be obtained via
Eqs. (2.1) and (2.2), respectively. We denote one-half the unperturbed bilayer thickness
by a, resulting in a hydrophobic mismatch U = W/2 − a at the bilayer-protein interface.
The unit vectors t̂ and n̂ denote the directions tangential and perpendicular (pointing to-
wards the protein) to the bilayer-protein boundary, respectively.
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where a is one-half the unperturbed lipid bilayer thickness (Fig. 2.2). The value of a

depends on, for instance, the chain length of the lipid species under consideration, and

can be directly measured in experiments [21, 22, 40].

The membrane elasticity theory describing the shape of lipid bilayers [4, 150–152]

dates back to the classic work of W. Helfrich [32], P. B. Canham [33], E. A. Evans [34],

and H. W. Huang [23]. Interestingly, one finds that the elastic energies governing h and

u in Eqs. (2.1) and (2.2) decouple from each other to leading order [27, 39]. In the most

straightforward model of bilayer-protein interactions [21–25, 27–30, 150–154], the energy

cost of protein-induced lipid bilayer midplane deformations is then captured by the clas-

sic Helfrich-Canham-Evans energy [32–34], and the energy cost of protein-induced lipid

bilayer thickness deformations is given by [21, 23–25, 27–30]

G =
1

2

∫
dxdy

[
Kb (2H)2 +Kt

(u
a

)2

+ τ (∇u)2 + 2τ
u

a

]
, (2.3)

where the integral runs over the (in-plane) lipid bilayer surface, Kb is the lipid bilayer

bending rigidity, the mean curvature H = 1
2
∇2u, Kt is the bilayer thickness deformation

modulus, and τ is the lateral membrane tension.

The terms Kb (∇2u)
2, Kt (u/a)

2, τ (∇u)2, and 2τ u
a

in Eq. (2.3) provide lowest-order

descriptions of the energy cost of bilayer bending, the compression/expansion of the bi-

layer hydrophobic core, changes in the projection of the bilayer area onto the reference

plane used in the Monge representation, and stretching deformations tangential to the

leaflet surfaces, respectively. Equation (2.3) has been successfully employed to describe

bilayer-protein interactions in a variety of experimental systems [4, 14, 21–23, 27, 28, 30,
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59, 102, 118, 155–157]. In general, the protein-induced lipid bilayer thickness deforma-

tions captured by Eq. (2.3) compete with protein-induced bilayer midplane deformations

[22, 32–38, 54–56, 107, 153, 154, 158]. Depending on the specific bilayer-protein system

under consideration, both contributions to the elastic energy of bilayer-protein interactions

may need to be considered [22, 27]. We also assume in Eq. (2.3) that the lipids forming

the bilayer have zero intrinsic curvature. A nonzero lipid intrinsic curvature could also be

included in the formalism employed here [24, 25, 119]. Furthermore, the elastic energy

of protein-induced lipid bilayer deformations involves, in general, contributions due to lipid

tilt deformations [32, 56, 159–161], in addition to contributions due to bilayer thickness

and bilayer midplane deformations. Finally, we note that one could extend Eq. (2.3) to in-

clude a bending term associated with the Gaussian membrane curvature. Previous work

on bilayer-protein interactions indicates that Gaussian curvature contributions to Eq. (2.3)

tend to be negligible in experiments [27, 119]. We employ here Eq. (2.3) as a simple

model system for investigating the effect of protein shape on the elastic energy of protein-

induced lipid bilayer deformations while noting that, as illustrated above, Eq. (2.3) can be

extended and modified in a variety of ways.

Similarly as the unperturbed lipid bilayer thickness 2a, the effective parameters Kb and

Kt in Eq. (2.3) characterizing the elastic properties of the bilayer membrane depend on

the lipid composition, and can be directly measured in experiments [21, 22, 40]. Typical

values of Kb, Kt, and a for cell membranes are Kb = 20 kBT , Kt = 60 kBT /nm2, and

a = 1.6 nm [28, 40, 114, 116]. In Chapters 2 and 3 we use these values of Kb, Kt, and

a; in Chapter 4 we will assign to Kb, Kt, and a temperature dependent relations. When

studying the dependence of protein-induced bilayer thickness deformations on lipid chain
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length we follow Refs. [27, 40, 162] and assume, for simplicity, a linear dependence of a

on lipid chain length:

a =
1

2
(0.13m+ 1.7) nm . (2.4)

The integer m in Eq. (2.4) denotes the lipid chain length (number of carbon atoms com-

prising each lipid chain), with the approximate range 13 ≤ m ≤ 22 for phospholipids in

cell membranes [1, 17, 19, 40]. For simplicity, we take Kb and Kt to be independent of m

while noting that, in general, Kb and Kt may have a (weak) dependence on m [40].

The effective parameters Kb, Kt, and a in Eq. (2.3) yield the characteristic length scale

λ =

(
a2Kb

Kt

)1/4

, (2.5)

which corresponds to the characteristic decay length of bilayer thickness deformations

[27]. As alluded to above, we have λ ≈ 1 nm [22, 28]. Similarly, the bilayer bending

rigidity Kb defines a characteristic energy scale in Eq. (2.3). It is therefore convenient to

recast the bilayer thickness deformation energy in Eq. (2.3) in terms of the characteristic

spatial and energy scales, λ and Kb. In Chapters 2 and 3, we use a dimensionless form

of Eq. (2.3) such that ḠKb → G, x̄λ → x, ȳλ → y, ūλ → u, āλ → a, K̄tKb/λ
2 → Kt, and

τ̄Kb/λ
2 → τ , resulting in

Ḡ =
1

2

∫
dx̄dȳ

[(
∇̄2ū

)2
+ ū2 + τ̄

(
∇̄ū

)2
+ 2τ̄

ū

ā

]
, (2.6)

where ∇̄ ≡ λ∇.
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We assume that, for a given protein conformational state, the dominant bilayer thick-

ness deformation field ū(x̄, ȳ) minimizes Eq. (2.6) subject to suitable boundary conditions

[21, 23–25, 27, 28, 30]. The Euler-Lagrange equation associated with Eq. (2.6) is given

by

(
∇̄2 − ν̄+

) (
∇̄2 − ν̄−

)
ū = − τ̄

ā
(2.7)

with ν̄± = 1
2

(
τ̄ ± i

√
4− τ̄ 2

)
, where i is the imaginary unit, and ū is composed of a general

solution ūg (x̄, ȳ) and a particular solution ūp = −τ̄ /ā. To construct the general solution of

Eq. (2.7) for protein-induced bilayer thickness deformations it is useful to transform (x̄, ȳ)

to the dimensionless polar coordinates (r̄, θ) with the protein center as the origin of the

polar coordinate system. Assuming that protein-induced bilayer thickness deformations

form a localized membrane footprint ūg → 0 as r̄ → ∞ [23, 118, 119], in which case

Eq. (2.7) yields [30, 58, 59]

ū (r̄, θ) +
τ̄

ā
= f̄+ (r̄, θ) + f̄− (r̄, θ) , (2.8)

where the Fourier-Bessel series

f̄±(r̄, θ) = A±
0K0

(√
ν̄±r̄

)
+

∞∑

n=1

[
A±

nKn

(√
ν̄±r̄

)
cos (nθ) +B±

nKn

(√
ν̄±r̄

)
sin (nθ)

]
, (2.9)

in which the Kn are the modified Bessel functions of the second kind [163] and the val-

ues of the coefficients A±
0 , A±

n , and B±
n are determined by the bilayer-protein boundary

conditions.
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The bilayer thickness deformation energy in Eq. (2.6) is conveniently evaluated for

the stationary bilayer thickness deformation field in Eq. (2.8) by noting that, via Eq. (2.7),

Eq. (2.6) can be transformed to a line integral along the bilayer-protein boundary C̄ [27,

30, 59] (Fig. 2.2). For simplicity, we thereby take the bilayer-protein boundary to be spec-

ified by the polar curve r̄ = C̄(θ)r̂, where r̂ is the radial unit vector pointing away from the

protein center. We thus have

Ḡ =
1

2

∫ 2π

0

dθ l̄ n̂ ·
[
∇̄ū∇̄2ū−

(
ū+

τ̄

ā

)
∇̄3ū+ τ̄

(
ū+

τ̄

ā

)
∇̄ū

] ∣∣∣∣
r̄=C̄(θ)

+ Ḡ∞ , (2.10)

where the line element l̄ =
√[

C̄(θ)
]2

+
[
C̄ ′(θ)

]2, the unit vector n̂ is normal to the tangent

of r̄ = C̄(θ)r̂ and points towards the protein (Fig. 2.2), and Ḡ∞ = − (τ̄ /ā)2
∫
dx̄dȳ. The

constant term Ḡ∞ emerges from the relaxation of the “loading" device producing tension

(τ > 0) and diverges under the assumption of an asymptotically flat, infinite membrane.

Since Ḡ∞ does not contribute to the energy cost of protein-induced bilayer thickness

deformations we shift Ḡ so as to subtract Ḡ∞ from Ḡ, Ḡ − Ḡ∞ → Ḡ. Note that the term

in brackets in Eq. (2.10) may be interpreted as a bilayer-protein line tension along the

bilayer-protein boundary [27, 30, 102]. The normal vector n̂ in Eq. (2.10) is obtained by

differentiating the bilayer-protein boundary curve r̄ = C̄(θ)r̂ with respect to θ and rotating

the resulting tangent vector by π/2 so as to point towards the protein,

n̂ =
−C̄(θ)r̂̂r̂r + C̄ ′(θ)θ̂̂θ̂θ

l̄
, (2.11)
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where we have noted that the (counterclockwise) angular unit vector θ̂̂θ̂θ = dr̂/dθ in po-

lar coordinates (Fig. 2.2). Equation (2.10) with Eq. (2.11) allows calculation of Ḡ in

Eq. (2.6) and, hence, G in Eq. (2.3) along a one-dimensional curve rather than over a

two-dimensional surface, which provides a computationally efficient method for evaluat-

ing Ḡ.

2.1.2 Modeling protein shape

The coefficientsA±
0 , A±

n , andB±
n in Eq. (2.9) are fixed by the boundary conditions at the

bilayer-protein interface. The general mathematical form of these boundary conditions,

which encode the key protein properties governing protein-induced lipid bilayer thickness

deformations, follows from the calculus of variations [164, 165]. Based on previous work

on protein-induced bilayer thickness deformations [21–26, 118], we assume that the lipid

bilayer thickness deforms in the vicinity of membrane proteins so as to achieve hydropho-

bic matching at the bilayer-protein interface. We thus have the boundary condition

ū(r̄, θ)
∣∣
r̄=C̄(θ)

+
τ̄

ā
= Ū(θ) +

τ̄

ā
, (2.12)

where the bilayer-protein hydrophobic mismatch

Ū(θ) =
1

2

[
W̄ (θ)− 2ā

]
, (2.13)

in which W (θ) = λW̄ (θ) is the protein hydrophobic thickness along the bilayer-protein

boundary (Fig. 2.2). For large enough magnitudes of U , membrane proteins or lipids may
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expose parts of their hydrophobic regions to water, which would amount to an offset of W̄

in Eq. (2.13). For a given membrane protein, W (θ) can be estimated from the molecular

structure of the membrane protein [21, 22, 30, 59, 60] and/or computer simulations [31,

166]. We explore here protein-induced bilayer thickness deformations for generic models

of W (θ) inspired by the molecular structure of the mechanosensitive channel of large

conductance (MscL) [42, 91, 167, 168].

In addition to Eq. (2.12), it is also necessary to specify boundary conditions on the

(normal) derivative of u at the bilayer-protein interface [164, 165]. The appropriate choice

for these boundary conditions has been a matter of debate, and is likely to depend on the

specific system under consideration [21–25, 27–31, 39, 56, 102, 118, 160, 161, 169]. We

generally focus on the fixed-value boundary condition

n̂ · ∇̄ū(r̄, θ)
∣∣
r̄=C̄(θ)

= Ū ′(θ) , (2.14)

but also explore choices for Ū ′(θ) minimizing the bilayer thickness deformation energy.

One may physically interpret fixed-value boundary conditions on the derivative of u as

corresponding to scenarios in which the lipid leaflet surfaces are normal to the protein hy-

drophobic surface at the bilayer-protein boundary [27], while natural boundary conditions

minimizing the bilayer thickness deformation energy permit arbitrary slopes of u [118]. A

more detailed molecular model of the gradients of the lipid bilayer leaflets at bilayer-protein

interfaces can be developed by explicitly taking into account lipid tilt [26, 161, 170]. We

allow for constant as well as varying Ū ′(θ) in Eq. (2.14).
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For a (hypothetical) membrane protein with a perfectly circular cross section C̄(θ) =

R̄, where R̄ is the (dimensionless) protein radius, and constant Ū and Ū ′, the bilayer-

protein boundary conditions in Eqs. (2.12) and (2.14) are azimuthally symmetric about

the protein center, and the resulting protein-induced bilayer thickness deformations also

show azimuthal symmetry about the protein center [23, 27, 102, 118]. Equations (2.12)

and (2.14) suggest three, not mutually exclusive, modes for protein structures to break

rotational symmetry, and to hence endow protein-induced bilayer thickness deformations

with a non-trivial structure [58, 59]. First, the value of Ū in Eq. (2.12) or, second, the

value of Ū ′ in Eq. (2.14) may vary along the bilayer-protein interface. To explore generic

effects of varying Ū or Ū ′ on protein-induced bilayer thickness deformations we consider

the bilayer-protein hydrophobic mismatch

Ū(θ) = Ū0 + β̄ cos(wθ) (2.15)

and the bilayer-protein contact slope

Ū ′(θ) = Ū ′
0 + γ̄ cos(vθ) , (2.16)

where Ū0 and Ū ′
0 denote the average bilayer-protein hydrophobic mismatch and bilayer-

protein contact slope, β̄ and γ̄ denote the amplitudes of the perturbations about these

average values, and w and v denote the protein symmetries associated with variations in

Ū and Ū ′. In Chapters 2 and 3, we set Ū0λ = −0.1 nm and β̄λ = 0.5 nm in Eq. (2.15) for

all calculations involving a modulation in the bilayer-protein hydrophobic mismatch, and
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Ū ′
0 = 0 and γ̄ = 0.3 in Eq. (2.16) for all calculations involving a modulation in the bilayer-

protein contact slope. For all scenarios considered in Chapters 2 and 3 for which we

keep Ū or Ū ′ constant along the bilayer-protein interface we set, unless stated otherwise,

Ūλ = 0.3 nm or Ū ′ = 0. The values of U and U ′ employed here are in line with previous

work on MscL and gramicidin channels [28, 31, 42, 91, 118].

Angular variations in C̄(θ) along the bilayer-protein boundary r̄ = C̄(θ)r̂ provide, in

addition to Eqs. (2.15) and (2.16), a third mode for a protein structure to break azimuthal

symmetry of protein-induced bilayer thickness deformations about the protein center. In-

spired by molecular structures of tetrameric and pentameric MscL [42, 59, 60, 171] and

other membrane proteins [5, 146], we consider here two generic classes of protein shapes

breaking rotational symmetry. On the one hand, we consider clover-leaf protein cross sec-

tions specified by

C̄(θ) = R̄
[
1 + ϵ cos(sθ)

]
, (2.17)

where ϵ parameterizes the magnitude of deviations from a circular protein cross section,

ϵ = 0 for circular protein cross sections, and s denotes the symmetry of the boundary

curve [see Figs. 2.2(a) and 2.3(a)]. On the other hand, we consider (rounded) polygonal

protein cross sections specified by the series

C̄(θ) = ĀR̄

√√√√
[

P∑

p=−P

cos(sp+ 1)θ

(sp+ 1)2

]2

+

[
P∑

p=−P

sin(sp+ 1)θ

(sp+ 1)2

]2

, (2.18)

where larger P yield sharper polygonal corners with P = 0 for circular protein cross

sections, ĀR̄ is a rescaling factor chosen so as to ensure that the polygons are inscribed
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P = 5

FIG. 3: Cross-sectional shapes of (a) clover-leaf proteins–from
top to bottom we have monomers, dimers, trimers, tetramers, and
pentamers, respectively and from left to right we have ✏ = 0, 0.1,
0.3, 0.5, 0.7, 0.9, respectively– and (b) polygonal proteins–from
top to bottom we have tetramers, pentamers, hexamers,
heptamers, and octamers, respectively and from left to right we
have P = 1, 2, 3, 4, 5, respectively.

where larger P yield sharper polygonal corners with
P = 0 for circular protein cross sections, ĀR̄ is a rescal-
ing factor chosen so as to ensure that the polygons are
inscribed in circles of radius R̄, and s denotes the polyg-
onal symmetry [15, 49] [see Figs. 2(b) and ??(b)]. We
have

ĀR̄ =
R̄

PP
p=�P

1
(sp+1)2

. (19)

We set P = 5 in Eqs. (18) and (19). For the sce-
narios considered here we found that an increase in P
beyond P = 5 only resulted in minor shifts in the bi-
layer thickness deformation energy. For all the calcula-
tions described here we use R̄ ⇡ 2.3/�, which approxi-
mately corresponds to the observed size of a closed state
of MscL [6, 12].

III. BOUNDARY VALUE METHOD FOR
BILAYER THICKNESS DEFORMATIONS

In this section we introduce a BVM for bilayer thick-
ness deformations, which allows the calculation of the
protein-induced bilayer thickness deformations and asso-
ciated energy of bilayer thickness deformations for arbi-
trary protein shapes. We will use the BVM described
here to calculate the bilayer thickness deformation field
ū(r̄, ✓) in Eq. (8) and the resulting bilayer thickness de-
formation energy G in Eq. (3) via Eq. (10) for arbitrary
bilayer-protein boundary shapes r̄ = C̄(✓)r̂ and bound-
ary conditions Ū(✓) and Ū 0(✓) in Eqs. (12) and (14). We
first provide a general formulation of the BVM for bilayer
thickness deformations, and validate this BVM against
exact analytic solutions and numerical solutions obtained
using FEM (see Sec. III A). We then discuss how the nu-
merical performance of the BVM for bilayer thickness
deformations can be improved by employing nonuniform
boundary point distributions (see Sec. III C).

A. Formulation and validation of the boundary
value method

The BVM for bilayer thickness deformations takes the
analytic solution for ū(r̄, ✓) in Eq. (8) as its starting
point, and assumes that the infinite series in this gen-
eral solution can be truncated at some finite order N :

ū (r̄, ✓) ⇡ f̄+
N (r̄, ✓) + f̄�

N (r̄, ✓) , (20)

where

f̄±
N (r̄, ✓) =A±

0 K0 (
p
⌫̄±r̄) +

NX

n=1


A±

n Kn (
p
⌫̄±r̄) cos (n✓) + B±

n Kn (
p
⌫̄±r̄) sin (n✓)

�
.

(21)

The solution in Eq. (20) with Eq. (21) contains the 4N+2
unknown constants A±

0 , A±
n , and B±

n . In the BVM for bi-
layer thickness deformations, we fix these coe�cients by
imposing the boundary conditions in Eqs. (12) and (14)
at 2N + 1 points along the bilayer-protein interface. For
now, we take these boundary points to be uniformly
distributed along the bilayer-protein interface, with an
identical arc length separation between boundary points
along the bilayer-protein interface. We return to the dis-
tribution of boundary points in Sec. III C.

From the boundary conditions in Eqs. (12) and (14)
we have

ū(r̄, ✓j)
��
r̄=C̄(✓j)

= Ū (✓j) , (22)

n̂ · r̄ū(r̄, ✓j)
��
r̄=C̄(✓j)

= Ū 0 (✓j) , (23)

in which j = 1, 2, . . . , 2N + 1 denote the boundary
points along the bilayer-protein interface employed for

Figure 2.3: Cross sections of cylindrical protein shapes (left-most panels) and (a) clover-
leaf and (b) polygonal protein shapes (right panels). The clover-leaf protein cross sections
in panel (a) are obtained from Eq. (2.17) with ϵ = 0.07, 0.14, 0.21, 0.28, and 0.35 (left to
right) and s = 1, 2, 3, 4, and 5 (top to bottom), with ϵ = 0 yielding a circular protein
cross section. Note that the clover-leaf protein cross sections with s = 1 only show small
deviations from the corresponding circular protein cross section obtained with ϵ = 0 in
Eq. (2.17) (dashed curves) for the values of ϵ considered here. The polygonal protein
cross sections in panel (b) are obtained from Eq. (2.18) with P = 1, 2, 3, , 4, and 5 (left
to right) and s = 4, 5, 6, 7, and 8 (top to bottom). As a guide to the eye, these polygonal
protein cross sections are inscribed in circles obtained with P = 0 in Eq. (2.18) (dashed
curves).
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in circles of radius R̄, and s denotes the polygonal symmetry [59, 172] [see Fig. 2.3(b)].

We have

ĀR̄ =
R̄∑P

p=−P
1

(sp+1)2

. (2.19)

Unless stated otherwise, we set P = 5 in Eqs. (2.18) and (2.19). For the scenarios

considered here we found that an increase in P beyond P = 5 only resulted in minor

shifts in the bilayer thickness deformation energy (see Figure 2.8). For all the calculations

described in Chapters 2 and 3 we use R̄λ ≈ 2.3 nm in Eqs. (2.17) and (2.19), which

approximately corresponds to the observed size of a closed state of MscL [27, 42].

2.2 Boundary value method for bilayer thickness defor-

mations

In this section we introduce a BVM for bilayer thickness deformations, which allows

calculation of protein-induced bilayer thickness deformations, and their associated elastic

energy, for general protein shapes. In the following sections we use this BVM to calcu-

late the bilayer thickness deformation field ū(r̄, θ) in Eq. (2.8), and the resulting bilayer

thickness deformation energy G in Eq. (2.3), for the clover-leaf and polygonal protein

shapes r̄ = C̄(θ)r̂ in Eqs. (2.17) and (2.18) and the boundary conditions Ū(θ) and Ū ′(θ)

in Eqs. (2.15) and (2.16). We first provide a general formulation of the BVM for bilayer

thickness deformations, and validate this BVM against exact analytic and FEM solutions

(see Sec. 2.2.1). We then discuss how the numerical performance of the BVM for bi-

layer thickness deformations can be improved by employing an adaptive point distribution
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(APD) that results in a nonuniform distribution of boundary points for non-circular protein

cross sections (see Sec. 2.2.2). For simplicity, we set τ = 0 in all of our calculations in

Chapters 2 and 3, but we continue discussing our mathematical equations assuming a

finite τ for completeness.

2.2.1 Formulation and validation of the boundary value method

The BVM for bilayer thickness deformations takes the analytic solution for
(
ū(r̄, θ) + τ̄

ā

)

in Eq. (2.8) as its starting point, and assumes that the infinite series in this general solution

can be truncated at some finite order N :

ū (r̄, θ) +
τ̄

ā
≈ f̄+

N (r̄, θ) + f̄−
N (r̄, θ) , (2.20)

where

f̄±
N (r̄, θ) = A±

0K0

(√
ν̄±r̄

)
+

N∑

n=1

[
A±

nKn

(√
ν̄±r̄

)
cos (nθ) +B±

nKn

(√
ν̄±r̄

)
sin (nθ)

]
. (2.21)

The solution in Eq. (2.20) with Eq. (2.21) contains the 4N + 2 unknown constants A±
0 ,

A±
n , and B±

n . In the BVM for bilayer thickness deformations, we fix these coefficients by

imposing the boundary conditions in Eqs. (2.12) and (2.14) at 2N + 1 boundary points

along the bilayer-protein interface. For now, we take these boundary points to be uni-

formly distributed along the bilayer-protein interface, with a constant arc length separating

adjacent boundary points along the bilayer-protein interface. We return to the distribution

of boundary points in Sec. 2.2.2.
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From the boundary conditions in Eqs. (2.12) and (2.14) we have

ū(r̄, θj)
∣∣
r̄=C̄(θj)

+
τ̄

ā
= Ū (θj) +

τ̄

ā
, (2.22)

n̂ · ∇̄ū(r̄, θj)
∣∣
r̄=C̄(θj)

= Ū ′ (θj) , (2.23)

in which j = 1, 2, . . . , 2N+1 denote the boundary points along the bilayer-protein interface,

where C̄(θ) = R̄ for proteins with a circular cross section, C̄(θ) is as in Eq. (2.17) for clover-

leaf protein shapes, and C̄(θ) is as in Eq. (2.18) for polygonal protein shapes (Fig. 2.3).

Equations (2.22) and (2.23) amount to a linear system of equations

Ax = b , (2.24)

where the vector x has dimension 4N + 2 and contains the unknown constants A±
0 , A±

n ,

and B±
n , the 4N + 2 components of the vector b contain the boundary conditions on the

right-hand sides of Eqs. (2.22) and (2.23), and A is a square matrix of order 4N + 2 that

has the coefficients of the constants A±
0 , A±

n , and B±
n on the left-hand sides of Eqs. (2.22)

and (2.23) as its entries. Equation (2.24) can be solved efficiently using the extensive

numerical methods available for the solution of matrix equations. We employed here LU

decomposition with partial pivoting to solve Eq. (2.24) for x [173, 174].

To quantify numerical errors in our BVM solutions it is useful to compute, based on the

calculated A±
0 , A±

n , and B±
n in Eq. (2.20) with Eq. (2.21), the values of

(
ū (r̄, θ) + τ̄

ā

)
and

n̂ · ∇̄ū (r̄, θ) along the bilayer-protein boundary for a given set of reference points distinct

from the boundary points employed for the BVM solution in Eq. (2.24). We compile these
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computed boundary values of
(
ū(r̄, θ) + τ̄

ā

)
and n̂ · ∇̄ū (r̄, θ) in a vector b̃, and compare b̃

to the corresponding exact boundary values b′ mandated by the boundary conditions in

Eqs. (2.12) and (2.14),

ηb′ = 100× ||b̃− b′||L2

||b′||L2

, (2.25)

where || · ||L2 is the L2 norm [173]. For all the results shown in this thesis, we used vec-

tors b′ and b̃ with 800 components [400 components each for
(
Ū(θ) + τ̄

ā

)
and Ū ′(θ)] in

Eq. (2.25), which we chose for a given protein shape so as to yield reference points with a

uniform spacing in θ over the interval 0 ≤ θ ≤ 2π. Figure 2.4(a) shows ηb′ in Eq. (2.25) for

the clover-leaf shapes in Eq. (2.17) with s = 3 and various values of ϵ. As expected, we

find that ηb′ tends to decrease with increasing N in Eq. (2.20) with Eq. (2.21), indicating

that a greater accuracy of BVM solutions is obtained at larger N . The local minima of ηb′

in Fig. 2.4(a) correspond to values of N that are multiples of s, which suggests that the ac-

curacy of the BVM is improved if N matches the protein symmetry. Figure 2.4(b) indicates

that the convergence of BVM solutions with increasing N can be improved substantially

through an APD that allows for a nonuniform distribution of boundary points, which we

discuss in Sec. 2.2.2.

We performed our BVM calculations in C++ using the arbitrary precision numerical li-

brary Arb [175]. Unless stated otherwise, we allowed for sufficient numerical precision so

that the boundary error ηb′ ≤ 0.1% in Eq. (2.25) and we obtained changes in G and ηb′ of

no more than 10−5% as the numerical precision was increased. We generated all figures in

MATLAB [176]. To speed up our calculations, we multi-threaded some of the source code
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convenient to perform calculations in numerical precision
greater than double precision (64 bits). However, many
protein cross-section shapes aren’t expected to deviate
largely from a circular shape. In Appendix B, we provide
examples of clover-leaf protein shapes for which the de-
formation energy calculations by the computational im-
plementation of the BVM presented here can be safely
carried out in double precision.

To quantify numerical errors in our BVM solutions it
is useful to compute, based on the calculated A±

0 , A±
n ,

and B±
n in Eq. (20) with Eq. (21), the values of ū(r̄, ✓)

along the bilayer-protein boundary for a given set of refer-
ence points distinct from the boundary points employed
for the BVM solution in Eq. (24). We compile these

computed boundary values of ū(r̄, ✓) in a vector b̃, and

compare b̃ to the corresponding exact boundary values
b0 mandated by the boundary conditions in Eqs. (12)
and (14),

⌘b0 = 100 ⇥ ||b̃ � b0||L2

||b0||L2

, (25)

where ||·||L2 is the L2 norm [53]. For all the results shown

in this article, we used vectors b0 and b̃ with 800 compo-
nents (400 components for Ū(✓) and Ū 0(✓)) in Eq. (25),
which we chose for a given protein shape so as to yield
reference points with a uniform spacing in ✓ over the in-
terval 0  ✓  2⇡.

Figure 4(a) shows ⌘b0 in Eq. (25) for the clover-leaf
shapes in Eq. (17) with s = 3 and various values of ✏.
As expected, we find that ⌘b0 tends to decrease with in-
creasing N in Eq. (20) with Eq. (21), indicating that a
greater accuracy of BVM solutions is obtained at larger
N . The local minima of ⌘b0 in Fig. 4(a) correspond to val-
ues of N that are multiples of s, which suggests that the
accuracy of the BVM is improved if N matches the pro-
tein symmetry. Figure 4(b) shows that the convergence
of BVM solutions with increasing N can be improved
substantially through an APD that allows for a nonuni-
form distribution of boundary points, which we discuss
in Sec. III B.

In our BVM calculations we evaluate the bilayer thick-
ness deformation energy G in Eq. (3) by numerically com-
puting Eq. (10) using the same 400 reference points em-
ployed to calculate ⌘b0 in Eq. (25). To this end, we ap-
proximate Ḡ in Eq. (10) through Eq. (20) with Eq. (21),

Ḡ ⇡ i

2

Z 2⇡

0

d✓l̄
�
Ū 0 � Ū n̂ · r̄

� �
f̄+

N � f̄�
N

� ��
r̄=C̄(✓)

, (26)

where we have used Eq. (7) and the boundary conditions
in Eqs. (12) and (14). We have confirmed that, within the
numerical accuracy used here, identical results for ⌘b0 and
Ḡ are obtained with more than 400 reference points. Note
that Eq. (26) must evaluate to a real number and l is real,
which means that the remaining terms in the integrand
in Eq. (26) evaluate to a purely imaginary number.

We validated the BVM for bilayer thickness deforma-
tions against exact analytic solutions obtained for pro-

FIG. 4. Percentage di↵erence between the exact bilayer thick-
ness deformation field along the bilayer-protein boundary
and the bilayer thickness deformation field obtained from the
BVM solution, ⌘b0 in Eq. (25), as a function of the number
of terms in the Fourier-Bessel series in Eq. (20) with Eq. (21)
for (a) uniformly distributed points along the bilayer-protein
boundary and (b) the boundary point distributions implied by
the APD method (see Sec. III B). For both panels we consid-
ered three-fold clover-leaf protein shapes (s = 3) in Eq. (17)
with the indicated values of ✏, R̄� ⇡ 2.3 nm, and the constant
Ū� = 0.3 nm and Ū 0 = 0. In panel (b) we used, for ease of
comparison, the same gap factor ⌦ = 0.25 in Eq. (28) for all
curves.

teins with circular cross sections [9, 12, 15, 28, 32, 33] and
against FEM solutions [15, 25, 26] (see Fig. 5). In partic-
ular, we consider in Fig. 5 cylindrical membrane proteins
with constant U and U 0 [see Fig. 5(a)], for which the
analytic solution of bilayer thickness deformations sim-
ply amounts to the zeroth-order terms in Eq. (20) with
Eq. (21) [9, 12, 28]. Furthermore, we consider in Fig. 5
crown-shaped membrane proteins with circular cross sec-
tion, constant U 0, and the periodically varying U(✓) in
Eq. (15) [see Fig. 5(b)], for which the analytic solution
is obtained at order N = w in Eq. (20) with Eq. (21)
[15, 32, 33]. We quantified the level of agreement be-
tween the BVM and FEM solutions and the correspond-
ing analytic solutions through the percentage di↵erence
in the calculated bilayer thickness deformation energy G

Figure 2.4: Percentage difference between the exact bilayer thickness deformation field
along the bilayer-protein boundary and the bilayer thickness deformation field obtained
from the BVM solution, ηb′ in Eq. (2.25), as a function of the number of terms in the
Fourier-Bessel series in Eq. (2.20) with Eq. (2.21) for (a) uniformly distributed points along
the bilayer-protein boundary and (b) the boundary point distributions implied by the APD
method (see Sec. 2.2.2). For both panels we considered three-fold clover-leaf protein
shapes (s = 3) in Eq. (2.17) with the indicated values of ϵ, R̄λ ≈ 2.3 nm, and the constant
Ūλ = 0.3 nm and Ū ′ = 0 and set τ = 0. In panel (b) we used, for ease of comparison, the
same gap factor Ω = 0.25 in Eq. (2.28) for all curves.

of the Arb library [177]. Appendix A.1 provides a more in-depth description of our com-

putational implementation of the BVM, and discusses possible issues with the numerical

solution of Eq. (2.24) arising from floating point errors and numerical instabilities. For the

polygonal protein shapes considered here, with P = 5 in Eq. (2.18) with Eq. (2.19), and
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for the clover-leaf protein shapes considered here with large s and/or large ϵ in Eq. (2.17)

we found it convenient to perform the BVM calculations with numerical precision greater

than double precision (64 bits). In Appendix A.2 we illustrate the extent to which double

precision calculations could be used to approximate the BVM results described here.

In our BVM calculations we evaluate the bilayer thickness deformation energy G in

Eq. (2.3) by numerically computing Eq. (2.10) using the same 400 reference points em-

ployed to calculate ηb′ in Eq. (2.25). To this end, we approximate Ḡ in Eq. (2.10) through

Eq. (2.20) with Eq. (2.21),

Ḡ ≈ 1

4

∫ 2π

0

dθl̄
[
Ū ′ −

(
Ū +

τ̄

ā

)
n̂ · ∇̄

] [
ν̄+f̄

+
N + ν̄−f̄

−
N

] ∣∣∣
r̄=C̄(θ)

, (2.26)

where we have used Eq. (2.7) and the boundary conditions in Eqs. (2.12) and (2.14). We

have confirmed that, within the numerical accuracy used here, identical results for ηb′ and

Ḡ are obtained with more than 400 reference points. Note that l̄ in Eq. (2.26) is real and

that Eq. (2.26) must evaluate to a real number, which means that the remaining terms in

the integrand in Eq. (2.26) evaluate to a real number; in the scenarios considered here,

we find f̄+
N and f̄−

N are complex conjugates so
(
f̄+
N − f̄−

N

)
evaluates to a purely imaginary

number and
(
f̄+
N + f̄−

N

)
evaluates to a purely real number.

We validated the BVM for bilayer thickness deformations against exact analytic so-

lutions obtained for proteins with circular cross sections [23, 27, 30, 58, 59, 118] and

against FEM solutions [30, 60, 61] (see Fig. 2.5). In particular, we consider in Fig. 2.5

cylindrical membrane proteins with constant U and U ′ [see Fig. 2.5(a)], for which the ex-

act analytic solution of bilayer thickness deformations simply amounts to the zeroth-order
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FIG. 5. Percentage di↵erence between exact analytic and
FEM (red curves) or BVM (blue curves) solutions for the
bilayer thickness deformation energy, ⌘G in Eq. (27), as a
function of the average edge size hLi used in the FEM solution
(upper axes) or the number of terms in Eq. (20) with Eq. (21)
used in the BVM solution (lower axes) for (a) a cylindrical
protein with R̄� = 2.3 nm and Ū� = 0.3 nm and (b) a crown-
shaped protein with R̄� = 2.3 nm, Ū0� = �0.1 nm, �̄� =
0.5 nm, and w = 5 in Eq. (15). We set Ū 0 = 0 for both
panels.

in Eq. (3),

⌘G = 100⇥
�����
G � Ganaly

Ganaly

����� , (27)

where Ganaly denotes the analytic solution [9, 12, 15, 28,
32, 33] and G denotes the corresponding BVM or FEM
solutions. We found, as expected, excellent numerical
agreement between the BVM and analytic solutions for
N = 0 [Fig. 5(a)] or N � w [Fig. 5(b)] within float-
ing point error. The FEM solutions in Fig. 5 are, up to
their expected numerical precision [15], in good agree-
ment with the analytic and BVM solutions, with the
agreement improving with decreasing average edge size
hLi in the FEM grid. For both cylindrical and crown-
shaped proteins, we have ⌘G ⇡ 0.01% for hLi ⇡ 0.1 nm
in the FEM solutions in Fig. 5.

B. Nonuniform boundary point distributions

As illustrated in Figs. 4 and 5, the BVM can provide
a highly accurate method for calculating protein-induced
bilayer thickness deformations. However, Fig. 4(a) also
shows that, for large enough deviations from a circu-
lar protein cross section, accurate BVM solutions re-
quire a large number of terms in the Fourier-Bessel se-
ries in Eq. (20) with Eq. (21). For non-circular pro-
tein cross sections, the numerical performance of the
BVM can be improved substantially by choosing suitable,
nonuniform boundary point distributions. In particular,
we found that boundary point distributions that assign
more points to, as viewed from the lipid bilayer, concave
boundary regions yield a more rapid convergence of G
with increasing N . This can be understood intuitively
by noting that, in the concave regions of a boundary
curve, di↵erent sections of the boundary curve can pro-
duce overlapping bilayer thickness deformation fields, in-
ducing protein self-interactions. One expects that higher-
order terms in the Fourier-Bessel series in Eq. (20) with
Eq. (21) are required to capture such interactions [15, 32].

To assign more boundary points to the concave bound-
ary regions of clover-leaf and (finite-P ) polygonal protein
shapes, we employ an APD of the BVM boundary points.
In the APD method, we distribute the 2N + 1 boundary
points such that boundary points are always assigned
to the apex points along the bilayer-protein boundary
curves furthest away from the protein center (see Fig. 6).
We distribute the remaining boundary points along the
sections of the bilayer-protein boundary curves that are
an arclength l̄ � ¯̀ away from the apex points, such that
these points are uniformly spaced in arclength, with the
gap length

¯̀= ⌦
�̄

2s
, (28)

where the gap factor ⌦ satisfies 0 < ⌦ < 1, �̄ is the
(dimensionless) protein circumference, and s is the sym-
metry of the clover-leaf or polygonal protein shape [see
also Eqs. (17) and (18)] (Fig. 6). For even values of s,
we consider in our APD method the general solution
in Eq. (20) with Eq. (21) for N = sM/2 with integers
M � 3. For odd values of s, we allow in Eq. (20) with
Eq. (21) for N = sM/2 for even integers M � 3, and for
N = (sM � 1) /2 for odd integers M � 3. To achieve an
approximately periodic distribution of boundary points
for even s and for odd s with even M , we found it conve-
nient to duplicate one of the apex boundary points, with
a slight o↵set in the duplicated boundary points by an
equal arclength distance from the apex [Fig. 6(b)]. For
greater numerical accuracy, this distance from the apex
could be optimized so as to reduce the boundary error
⌘b0 in Eq. (25), but we found it su�cient here to set it
equal to one-half the mean arclength spacing between
the other boundary points. Unless stated otherwise, we
use the APD method for all BVM calculations described
in this article, fixing ⌦ in Eq. (28) and N in Eq. (20)

Figure 2.5: Percentage difference between exact analytic and FEM (red curves) or BVM
(blue curves) solutions for the bilayer thickness deformation energy, ηG in Eq. (2.27), as
a function of the average edge size ⟨L⟩ used in the FEM solution (upper axes) or the
number of terms in Eq. (2.20) with Eq. (2.21) used in the BVM solution (lower axes) for (a)
a cylindrical protein with R̄λ = 2.3 nm and Ūλ = 0.3 nm and (b) a crown-shaped protein
with R̄λ = 2.3 nm, Ū0λ = −0.1 nm, β̄λ = 0.5 nm, and w = 5 in Eq. (2.15). We set Ū ′ = 0
and τ = 0 for both panels.

terms in Eq. (2.20) with Eq. (2.21) [23, 27, 118]. Furthermore, we consider in Fig. 2.5

crown-shaped membrane proteins with circular cross section, constant U ′, and the peri-

odically varying U(θ) in Eq. (2.15) [see Fig. 2.5(b)], for which the exact analytic solution

is obtained at order N = w in Eq. (2.20) with Eq. (2.21) [30, 58, 59]. We quantified the

level of agreement between the BVM and FEM solutions and the corresponding exact
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analytic solutions through the percentage difference in the calculated bilayer thickness

deformation energy G in Eq. (2.3),

ηG = 100×
∣∣∣∣∣
G−Ganaly

Ganaly

∣∣∣∣∣ , (2.27)

where Ganaly denotes the analytic solution [23, 27, 30, 58, 59, 118] and G denotes

the corresponding BVM or FEM solutions. We found, as expected, excellent numerical

agreement between the BVM and the aforementioned exact analytic solutions for N = 0

[Fig. 2.5(a)] or N ≥ w [Fig. 2.5(b)] within floating point error. The FEM solutions in Fig. 2.5

are, up to their expected numerical precision [30], in good agreement with the exact ana-

lytic and BVM solutions, with the agreement improving with decreasing average edge size

⟨L⟩ in the FEM grid. For both cylindrical and crown-shaped membrane proteins, we have

ηG ≈ 0.01% for ⟨L⟩ ≈ 0.1 nm in the FEM solutions in Fig. 2.5.

2.2.2 Nonuniform boundary point distributions

As illustrated in Figs. 2.4 and 2.5, the BVM can provide a highly accurate method

for calculating protein-induced bilayer thickness deformations. However, Fig. 2.4(a) also

shows that, for large enough deviations from a circular protein cross section, accurate

BVM solutions require a large number of terms in the Fourier-Bessel series in Eq. (2.20)

with Eq. (2.21). For non-circular protein cross sections, the numerical performance of the

BVM can be improved substantially by choosing suitable, nonuniform boundary point dis-

tributions. In particular, we found that boundary point distributions that assign more points
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to, as viewed from the lipid bilayer, concave boundary regions yield a more rapid conver-

gence of G with increasing N . This can be understood intuitively by noting that, in the con-

cave regions of a boundary curve, different sections of the boundary curve can produce

overlapping bilayer thickness deformation fields, inducing protein self-interactions. One

expects that higher-order terms in the Fourier-Bessel series in Eq. (2.20) with Eq. (2.21)

are required to capture such interactions [30, 58].

To assign more boundary points to the concave boundary regions of clover-leaf and

(finite-P ) polygonal protein shapes, we employ an APD of the BVM boundary points. In

the APD method, we distribute the 2N + 1 boundary points such that boundary points

are always assigned to the apex points along the bilayer-protein boundary curves furthest

away from the protein center (see Fig. 2.6). We distribute the remaining boundary points

along the sections of the bilayer-protein boundary curves that are an arc length l̄ ≥ ℓ̄ away

from the apex points such that these points are uniformly spaced in arc length, with the

gap length

ℓ̄ = Ω
Γ̄

2s
, (2.28)

where the gap factor Ω satisfies 0 < Ω < 1, Γ̄ is the (dimensionless) protein circumference,

and s is the symmetry of the clover-leaf or polygonal protein shape [see also Eqs. (2.17)

and (2.18)] (Fig. 2.6). For even values of s, we consider in our APD method the general

solution in Eq. (2.20) with Eq. (2.21) for N = sM/2 with integers M ≥ 3. For odd values

of s, we allow in Eq. (2.20) with Eq. (2.21) for N = sM/2 for even integers M ≥ 3, and

for N = (sM − 1) /2 for odd integers M ≥ 3. To achieve an approximately periodic dis-

tribution of boundary points for even s and for odd s with even M , we found it convenient
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Figure 2.6: Illustration of the APD method used to increase the numerical efficiency of
BVM solutions for (a) a three-fold clover-leaf protein shape (s = 3) and (b) a four-fold
clover-leaf protein shape (s = 4) in Eq. (2.17). The boundary points used for the BVM
solutions are indicated by blue dots. In panel (a) we set ✏ = 0.38, N = 31, and ⌦ = 0.62 for
the gap length ¯̀ in Eq. (2.28). In panel (b) we set ✏ = 0.30, N = 42, and ⌦ = 0.72. For both
panels we set R̄� ⇡ 2.3 nm and ⌧ = 0. To achieve an approximately periodic distribution
of boundary points for even s, we duplicated in panel (b) the boundary point at the right-
most apex, and slightly offset the resulting two boundary points along the bilayer-protein
interface (see main text). The values of N in panels (a) and (b) were chosen for illustrative
purposes. We generally employ values of N greater than those considered here so as to
meet the numerical precision criteria imposed here (see main text).

to duplicate one of the apex boundary points, with a slight offset in the duplicated bound-

ary points by an equal arc length distance from the apex [see Fig. 2.6(b)]. For greater

numerical accuracy, this distance from the apex could be optimized so as to reduce the

boundary error ⌘b0 in Eq. (2.25), but we found it sufficient here to set it equal to one-half
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Figure 2.6: Illustration of the APD method used to increase the numerical efficiency of
BVM solutions for (a) a three-fold clover-leaf protein shape (s = 3) and (b) a four-fold
clover-leaf protein shape (s = 4) in Eq. (2.17). The boundary points used for the BVM
solutions are indicated by blue dots. In panel (a) we set ϵ = 0.38, N = 31, and Ω = 0.62 for
the gap length ℓ̄ in Eq. (2.28). In panel (b) we set ϵ = 0.30, N = 42, and Ω = 0.72. For both
panels we set R̄λ ≈ 2.3 nm and τ = 0. To achieve an approximately periodic distribution
of boundary points for even s, we duplicated in panel (b) the boundary point at the right-
most apex, and slightly offset the resulting two boundary points along the bilayer-protein
interface (see main text). The values of N in panels (a) and (b) were chosen for illustrative
purposes. We generally employ values of N greater than those considered here so as to
meet the numerical precision criteria imposed here (see main text).

to duplicate one of the apex boundary points, with a slight offset in the duplicated bound-

ary points by an equal arc length distance from the apex [see Fig. 2.6(b)]. For greater

numerical accuracy, this distance from the apex could be optimized so as to reduce the

boundary error ηb′ in Eq. (2.25), but we found it sufficient here to set it equal to one-half

the arc length spacing between the boundary points in the concave boundary regions.

Unless stated otherwise, we used the APD method for all BVM calculations described in
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this article, fixing Ω in Eq. (2.28) and N in Eq. (2.20) with Eq. (2.21) such that the bound-

ary error ηb′ ≤ 0.1% in Eq. (2.25) and we obtained changes in G and ηb′ of no more than

10−5% as the numerical precision was increased.

As illustrated in Fig. 2.4(b) for clover-leaf protein shapes, the APD method employed

here improves considerably the convergence of the BVM with increasing N , particularly

for proteins that show substantial deviations from a circular cross section. As a result, a

given numerical accuracy of BVM solutions can be achieved with smaller N . We note that,

for proteins with (discrete) rotational symmetry, the Fourier-Bessel series in Eq. (2.20) with

Eq. (2.21) must show the same symmetry. Indeed, in our BVM calculations we find that,

within the numerical precision employed here, the coefficients of terms in Eq. (2.20) with

Eq. (2.21) that break the protein symmetry take values equal to zero. On this basis one

could, for a given protein symmetry, further improve the numerical efficiency of the BVM

by using the protein symmetry to remove some of the terms in the Fourier-Bessel series

in Eq. (2.20) with Eq. (2.21). For the scenarios considered here the BVM was efficient

enough so as not to require such further refinement.

Figure 2.7 illustrates the calculation of the bilayer thickness deformation energy, G in

Eq. (2.3), using the BVM with APD for the clover-leaf protein shapes in Eq. (2.17) with

various protein symmetries, s, and deviations from a circular protein cross section, ϵ. As

expected [59, 61], we find in Fig. 2.7(a) that G increases with increasing s and ϵ. We also

show in Fig. 2.7 the corresponding results obtained from the FEM with an average edge
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FIG. 7. Comparing BVM and FEM solutions for the elastic
energy of protein-induced bilayer thickness deformations. (a)
Bilayer thickness deformation energy, Ḡ in Eq. (6), obtained
using BVM and FEM solutions for ū in Eq. (2) and (b) corre-
sponding percentage di↵erence between the BVM and FEM
solutions for Ḡ, µ0

G in Eq. (29), for the clover-leaf protein
shapes in Eq. (17) as a function of ✏ with the indicated values
of s, R̄� ⇡ 2.3 nm, Ū� = 0.3 nm, and Ū 0 = 0. For the FEM
solutions we employed an average edge size hLi ⇡ 0.1 nm.

which we denote by ⇤̄analy. As expected, Fig. 9 shows
that the variations in ⇤̄ are more pronounced for smaller
clover-leaf protein shapes. We also find in Fig. 9 that
h⇤̄i < ⇤̄analy, with a larger

��h⇤̄i � ⇤̄analy

�� for smaller R̄
in Fig. 9.

Interestingly, we can have ⇤̄ < 0 in Fig. 9(a) for the
smaller clover-leaf protein shape in Fig. 8(a), while ⇤ > 0
in Fig. 9(b) for the larger clover-leaf protein shape in
Fig. 8(b). The regime with ⇤ < 0 in Fig. 9(a) can be
understood by noting that, with a constant Ū > 0 and
Ū 0 = 0, ⇤ in Eq. (33) corresponds to minus the change
in the mean curvature in the direction perpendicular to
the protein boundary. For the points along the clover-
leaf boundary closest and furthest away from the pro-
tein center, n̂ is aligned with the radial direction and
points towards the protein center. For the points along
the clover-leaf boundary shape in Figs. 8(a) and 8(b) fur-
thest away from the protein center the mean curvature is
negative with the sign convention used here and decreases

10

FIG. 8. Color maps of the thickness deformation footprints
due to clover-leaf protein shapes with (a) R̄ = 1 and (b)
R̄ = 10 in Eq. (17) with s = 5, ✏ = 0.2, Ū = 0.3/�, and
Ū 0 = 0. Both thickness deformation footprints were calcu-
lated through the BVM. The unperturbed lipid bilayer thick-
ness is given by 2ā = 3.2/�.

Fig. 7(b) we quantify the agreement between our BVM
and FEM results through the percentage di↵erence in G,

µ0
G = 100⇥

�����
GBVM � GFEM

GFEM

����� . (29)

We find in Fig. 7 that the BVM and FEM solutions yield
excellent agreement for the energy of protein-induced bi-
layer thickness deformations for non-circular as well as
circular protein cross sections, with the level of agreement
between BVM and FEM solutions being in line with the
accuracy of FEM solutions expected from Fig. 5.

IV. ANALYTIC ESTIMATES OF THE BILAYER
THICKNESS DEFORMATION ENERGY FOR

ARBITRARY PROTEIN SHAPES

For membrane inclusions with circular cross section,
the solution for the thickness deformation field ū(r̄, ✓) in
Eq. (8) with Eq. (9) and the bilayer thickness deforma-
tion energy in Eq. (10) yield exact analytic expressions

for the energy of protein-induced bilayer thickness defor-
mations for arbitrary (angular) variations in the bilayer-
protein boundary conditions [18, 33, 44, 56]. The purpose
of this section is to develop, on this basis, a simple ana-
lytic scheme for estimating the energy of protein-induced
bilayer thickness deformations for proteins of arbitrary
shape. In Sec. V we show that these simple analytic
estimates agree remarkably well with the corresponding
BVM solutions for proteins of various shapes and sizes.

For a single membrane inclusion with circular cross
section and arbitrary (angular) variations in U(✓) and
U 0(✓), the exact solution of the Euler-Lagrange equation
in Eq. (7) is given by Eq. (8) with Eq. (9), and the cor-
responding bilayer thickness deformation energy follows
from Eq. (10) [18, 33, 44, 56]. For the choices for U(✓)
and U 0(✓) in Eqs. (15) and (16), we thus find the bilayer
thickness deformation energy

Ḡanaly = ⇡R̄analy(⌫̄+ � ⌫̄�)


Ū2

0 Ē0 + Ū 02
0 F̄0 + Ū0Ū

0
0H̄0

+
1

2

⇣
�̄2Ēw + �̄2F̄v + �wv�̄ �̄H̄w

⌘�����
r̄=R̄analy

,

w, v 6= 0 ,
(30)

where R̄analy is the radius of the circular protein cross
section, �wv is the Kronecker delta, and we’ve defined

D̄q = Kq(
p
⌫̄+r̄)@r̄Kq(

p
⌫̄�r̄) � Kq(

p
⌫̄�r̄)@r̄Kq(

p
⌫̄+r̄) ,

Ēq =
@r̄Kq(

p
⌫̄+r̄) · @r̄Kq(

p
⌫̄�r̄)

D̄q
,

F̄q =
Kq(

p
⌫̄+r̄)Kq(

p
⌫̄�r̄)

D̄q
,

H̄q =
Kq(

p
⌫̄+r̄)@r̄Kq(

p
⌫̄�r̄) + Kq(

p
⌫̄�r̄)@r̄Kq(

p
⌫̄+r̄)

D̄q
,

(31)

with Kq as the modified Bessel function of the second
kind and of arbitrary q-th order and @r̄Kq is its par-
tial derivative with respect to r̄; the 0th order terms in
Eq. (30) are the contribution due to the circular cross-
section shape and the remaining terms are due to varia-
tions in the boundary conditions. We use here Eq. (30)
to analytically estimate the bilayer thickness deforma-
tion energy associated with proteins of arbitrary (non-
circular) cross section. To this end, we choose R̄analy

in Eq. (30) such that the circumference of the circular
membrane inclusion considered in Eq. (30) is equal to
the circumference of the membrane protein under con-
sideration,

R̄analy =
�̄

2⇡
, (32)

where, for the clover-leaf and polygonal boundary curves
in Eqs. (17) and (18) with Eq. (19), the protein circum-
ference � follows from

�̄ =

Z 2⇡

0

d✓l̄ . (33)

FIG. 8. Color maps of the bilayer thickness deformation foot-
prints due to clover-leaf protein shapes with (a) R̄ = 1 and
(b) R̄ = 10 in Eq. (17) with s = 5, ✏ = 0.2, Ū� = 0.3 nm,
and Ū 0 = 0. Panels (c) and (d) show the mean curvature in
units of 1/�, H̄ = �H, associated with the thickness defor-
mation fields in panels (a) and (b), respectively, while panels
(e) and (f) show the corresponding mean curvature maps ob-
tained for Ū0� = �0.3 nm rather than Ū0� = 0.3 nm. We
set 2ā� = 3.2 nm for all panels. All results were obtained
through the BVM.

in magnitude as one radially moves away from the pro-
tein boundary, yielding ⇤̄ > 0 [Figs. 8(c,d)]. In contrast,
for the points along the clover-leaf boundary shape clos-
est to the protein center in Fig. 8(a) [but not Fig. 8(b)],
the mean curvature is approximately zero at the protein
boundary and decreases as one radially moves away from
the protein boundary, yielding ⇤̄ < 0. With a di↵erent
sign convention for the mean curvature or a protein with
a constant U < 0 rather than U > 0, analogous consider-
ations apply [Figs. 8(e,f)]. Thus, protein self-interactions
can e↵ectively lower the energy cost of protein-induced
lipid bilayer thickness deformations, in analogy to the en-
ergetically favorable bilayer-thickness-mediated protein
interactions found for identical membrane proteins in
close enough proximity [8, 10, 11, 15, 25, 26, 32, 58–65].

Figure 2.7: Comparing BVM and FEM solutions for the elastic energy of clover-leaf
protein-induced bilayer thickness deformations. (a) Bilayer thickness deformation energy,
Ḡ in Eq. (2.6), with τ = 0, obtained using BVM and FEM solutions for ū in Eq. (2.2) and
(b) corresponding percentage difference between the BVM and FEM solutions for Ḡ, µ′

G

in Eq. (2.29), for the clover-leaf protein shapes in Eq. (2.17) as a function of ϵ with the
indicated values of s, R̄λ ≈ 2.3 nm, Ūλ = 0.3 nm, and Ū ′ = 0. For the FEM solutions we
employed an average edge size ⟨L⟩ ≈ 0.1 nm.

size ⟨L⟩ ≈ 0.1 nm. In Fig. 2.7(b) we quantify the agreement between our BVM and FEM

results through the percentage difference in G,

µ′
G = 100×

∣∣∣∣∣
GBVM −GFEM

GFEM

∣∣∣∣∣ , (2.29)
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where GBVM and GFEM correspond to the values of G in Eq. (2.3) obtained through the

BVM and the FEM [30, 60, 61], respectively. Figure 2.8(a), shows the percentage error of

the bilayer thickness deformation and contact slope fields at the protein-bilayer interface

obtained from the BVM solution, ηb′ in Eq. (2.25), with APD as a function of the number

of terms in the Fourier-Bessel series in Eq. (2.20) with Eq. (2.21) for the pentamer (s =

5) polygon protein shapes using the P values indicated, showing convergence with an

increasingly smaller error with an increasing number of terms in the Fourier-Bessel series

in Eq. (2.20) with Eq. (2.21). The local minima of ηb′ in Fig. 2.8(a) correspond to values

of N that are multiples of s, which suggests that the accuracy of the BVM is improved

if N matches the protein symmetry. We also performed calculations using the FEM, but

for true polygon protein shapes, rather than those implied by Eqs. (2.18) and (2.19) with

finite P . As such, the polygon protein shapes used in the FEM solutions differ slightly from

those in the BVM solutions. As expected we find increasing agreement between the FEM

and BVM solutions with increasing P in Eqs. (2.18) and (2.19) as these are expected to

yield true polygonal protein shapes in the limit of P → ∞ [see Figure 2.8(b)]. Our results

indicate that using P = 5 is sufficient for our BVM solutions to agree remarkably well with

the FEM solutions. We find in Figs. 2.7 and 2.8 that the BVM and FEM solutions yield

excellent agreement for the energy of protein-induced bilayer thickness deformations for

non-circular as well as circular protein cross sections, with the level of agreement between

BVM and FEM solutions being in line with the accuracy of the FEM solutions expected

from Fig. 2.5.
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Figure 2.8: Convergence of BVM solutions for the elastic energy of polygon protein-
induced bilayer thickness deformations. (a) Percentage difference between the exact bi-
layer thickness deformation field along the bilayer-protein boundary and the bilayer thick-
ness deformation field obtained from the BVM solution, ⌘b0 in Eq. (2.25), as a function
of the number of terms, N , in the Fourier-Bessel series in Eq. (2.20) with Eq. (2.21) for
the boundary point distributions implied by the APD method (see Sec. 2.2.2), using the
indicated values of P in Eq. (2.18) and (2.19) with s = 5. (b) Percentage difference
between the FEM and BVM solutions for Ḡ, µ0

G in Eq. (2.29), where we calculated the
BVM solutions for the polygon protein shapes in Eqs. (2.18) and (2.19) as a function of
P and with the indicated values of s, R̄� ⇡ 2.3 nm, Ū� = 0.3 nm, Ū 0 = 0, N = 750, and
⌦ ⇡ 0.32, 0.24, 0.18, 0.16, and 0.16, for symmetries s = 4, 5, 6, 7, and 8, respectively, in
Eq. (2.28), while for the FEM solutions we employed an average edge size hLi ⇡ 0.1 nm
and used true polygon shapes, in contrast to those implied by Eqs. (2.18) and (2.19) with
finite P . For all BVM and FEM solutions depicted here, we set ⌧ = 0.
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Figure 2.8: Convergence of BVM solutions for the elastic energy of polygon protein-
induced bilayer thickness deformations. (a) Percentage difference between the exact bi-
layer thickness deformation field along the bilayer-protein boundary and the bilayer thick-
ness deformation field obtained from the BVM solution, ηb′ in Eq. (2.25), as a function
of the number of terms, N , in the Fourier-Bessel series in Eq. (2.20) with Eq. (2.21) for
the boundary point distributions implied by the APD method (see Sec. 2.2.2), using the
indicated values of P in Eq. (2.18) and (2.19) with s = 5. (b) Percentage difference
between the FEM and BVM solutions for Ḡ, µ′

G in Eq. (2.29), where we calculated the
BVM solutions for the polygon protein shapes in Eqs. (2.18) and (2.19) as a function of
P and with the indicated values of s, R̄λ ≈ 2.3 nm, Ūλ = 0.3 nm, Ū ′ = 0, N = 750, and
Ω ≈ 0.32, 0.24, 0.18, 0.16, and 0.16, for symmetries s = 4, 5, 6, 7, and 8, respectively, in
Eq. (2.28), while for the FEM solutions we employed an average edge size ⟨L⟩ ≈ 0.1 nm
and used true polygon shapes, in contrast to those implied by Eqs. (2.18) and (2.19) with
finite P . For all BVM and FEM solutions depicted here, we set τ = 0.
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Chapter 3

Dependence of protein-induced lipid bilayer

deformations on protein shape

In this chapter we apply our BVM to survey the dependence of protein-induced lipid

bilayer thickness deformations on protein shape. This chapter is organized as follows.

In Sec. 3.1, inspired by the BVM (see Chapter 2), we develop a simple analytic scheme

for estimating the energy of protein-induced lipid bilayer thickness deformations for mem-

brane proteins with non-circular cross sections. In Secs. 3.2 and 3.3 we test this analytic

approximation against BVM solutions. In Sec. 3.2, we survey the dependence of the bi-

layer thickness deformation energy on membrane protein shape, while in Sec. 3.3 we

explore some implications of these results for the self-assembly of protein oligomers and

transitions in protein conformational state. A summary and conclusions are provided in

Sec. 6.2.
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3.1 Analytic approximation of the bilayer thickness de-

formation energy

For membrane inclusions with circular cross section, the solution for the thickness

deformation field ū(r̄, θ) in Eq. (2.8) with Eq. (2.9) and the bilayer thickness deformation

energy in Eq. (2.10) yield exact analytic expressions for the energy of protein-induced bi-

layer thickness deformations for arbitrary (angular) variations in the bilayer-protein bound-

ary conditions [23–25, 30, 58, 59, 61]. The purpose of this section is to develop, on this

basis, a simple analytic scheme for estimating the energy of protein-induced bilayer thick-

ness deformations for membrane proteins with non-circular cross sections. In Sec. 3.2

we show that, for many protein shapes, these simple analytic estimates agree remarkably

well with the corresponding BVM solutions.

As in Chapter 2, it is convenient to recast the bilayer thickness deformation energy in

Eq. (2.3) in terms of the characteristic spatial and energy scales, the bilayer thickness de-

formation decay length scale λ and the bilayer bending ridigity Kb. Thus, consistent with

Chapter 2, we reformulate Eq. (2.3) with the following parameter substitutions: ḠKb → G,

x̄λ → x, ȳλ → y, ūλ → u, āλ → a, K̄tKb/λ
2 → Kt, and τ̄Kb/λ

2 → τ . We maintain

specific values for Ū0λ = −0.1 nm and β̄λ = 0.5 nm in Eq. (2.15) in calculations involving

variations in the bilayer-protein hydrophobic mismatch. Furthermore, we set Ū ′
0 = 0 and

γ̄ = 0.3 in Eq. (2.16) in calculations involving variations in the bilayer-protein contact slope.

In scenarios where we maintain Ū or Ū ′ constant along the bilayer-protein interface, we

set Ūλ = 0.3 nm or Ū ′ = 0, unless otherwise specified. These parameter values align
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with previous studies on MscL and gramicidin channels [28, 31, 42, 91, 118]. Additionally,

unless explicitly stated, we adopt a value of P = 5 in Eqs. (2.18) and (2.19), and we as-

sume R̄λ ≈ 2.3 nm in Eqs. (2.17) and (2.19), roughly corresponding to the observed size

of a closed state of MscL [27, 42]. For the sake of simplicity, we exclude considerations

of lateral membrane tension in this chapter by setting τ = 0.

For a single membrane inclusion with circular cross section and arbitrary (angular)

variations in U(θ) and U ′(θ), the exact solution of the Euler-Lagrange equation in Eq. (2.7)

is given by Eq. (2.8) with Eq. (2.9), and the corresponding bilayer thickness deformation

energy follows from Eq. (2.10) [30, 58, 59, 61]. For the choices for U(θ) and U ′(θ) in

Eqs. (2.15) and (2.16), and assuming membrane tension τ = 0, one thus finds the bilayer

thickness deformation energy

Ḡanaly = πR̄analy(ν̄+ − ν̄−)

[
Ū2
0 Ē0 + Ū ′2

0 F̄0 + Ū0Ū
′
0H̄0

+
1

2

(
β̄2Ēw + γ̄2F̄v + δwvβ̄ γ̄H̄w

)]∣∣∣∣
r̄=R̄analy

(3.1)

with v > 0 and w > 0, where R̄analy is the radius of the circular protein cross section, δwv

is the Kronecker delta, and we have defined

D̄q = Kq(
√
ν̄+r̄)∂r̄Kq(

√
ν̄−r̄)−Kq(

√
ν̄−r̄)∂r̄Kq(

√
ν̄+r̄) ,

Ēq =
[∂r̄Kq(

√
ν̄+r̄)] [∂r̄Kq(

√
ν̄−r̄)]

D̄q

,

F̄q =
Kq(

√
ν̄+r̄)Kq(

√
ν̄−r̄)

D̄q

,

H̄q =
Kq(

√
ν̄+r̄)∂r̄Kq(

√
ν̄−r̄) +Kq(

√
ν̄−r̄)∂r̄Kq(

√
ν̄+r̄)

D̄q

,

(3.2)
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where q = 0, 1, . . . , Kq denotes the qth order modified Bessel function of the second

kind, and ∂r̄ denotes the partial derivative with respect to r̄. The E0, F0, and H0 terms

in Eq. (3.1) are the contributions to Ḡanaly due to the constant Ū0 and Ū ′
0 in Eqs. (2.15)

and (2.16), while the remaining terms encapsulate the effects of the variations in U(θ) and

U ′(θ) in Eqs. (2.15) and (2.16) on Ḡanaly. We use here Eq. (3.1) to analytically estimate

the energy of protein-induced bilayer thickness deformations for membrane proteins with

non-circular cross sections. To this end, we choose R̄analy in Eq. (3.1) such that the

circumference of the circular membrane inclusion considered in Eq. (3.1) is equal to the

circumference of the membrane protein under consideration,

R̄analy =
Γ̄

2π
, (3.3)

where, for the clover-leaf and polygonal boundary curves in Eqs. (2.17) and (2.18) with

Eq. (2.19), the protein circumference Γ follows from Γ̄ =
∫ 2π

0
dθl̄, where, as in Eq. (2.10),

l̄ is the (dimensionless) line element.

The analytic estimate of the thickness deformation energy in Eq. (3.1) captures, for

the choice of R̄analy in Eq. (3.3), effects related to the overall shape of membrane pro-

teins. However, Eq. (3.1) does not capture effects due to strong local variations in the

protein cross section. For instance, the clover-leaf shapes in Eq. (2.17) can give, for large

enough ϵ and s, protein cross sections with pronounced invaginations. If the protein size

R is comparable to the decay length of bilayer thickness deformations, λ in Eq. (2.5),

such protein invaginations can yield overlaps in the protein-induced lipid bilayer thick-

ness deformations due to different portions of the bilayer-protein interface, resulting in
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the level of agreement between BVM and FEM solutions
being in line with the accuracy of the FEM solutions
expected from Fig. 5.

IV. ANALYTIC APPROXIMATION OF THE
BILAYER THICKNESS DEFORMATION

ENERGY

For membrane inclusions with circular cross section,
the solution for the thickness deformation field ū(r̄, ✓)
in Eq. (8) with Eq. (9) and the bilayer thickness defor-
mation energy in Eq. (10) yield exact analytic expres-
sions for the energy of protein-induced bilayer thickness
deformations for arbitrary (angular) variations in the
bilayer-protein boundary conditions [9–11, 15, 28, 35, 36].
The purpose of this section is to develop, on this basis,
a simple analytic scheme for estimating the energy of
protein-induced bilayer thickness deformations for mem-
brane proteins with non-circular cross sections. In Sec. V
we show that, for many protein shapes, these simple an-
alytic estimates agree remarkably well with the corre-
sponding BVM solutions.

For a single membrane inclusion with circular cross
section and arbitrary (angular) variations in U(✓) and
U 0(✓), the exact solution of the Euler-Lagrange equation
in Eq. (7) is given by Eq. (8) with Eq. (9), and the cor-
responding bilayer thickness deformation energy follows
from Eq. (10) [15, 28, 35, 36]. For the choices for U(✓)
and U 0(✓) in Eqs. (15) and (16), one thus finds the bilayer
thickness deformation energy

Ḡanaly = ⇡R̄analy(⌫̄+ � ⌫̄�)


Ū2

0 Ē0 + Ū 02
0 F̄0 + Ū0Ū

0
0H̄0

+
1

2

✓
�̄2Ēw + �̄2F̄v + �wv�̄ �̄H̄w

◆�����
r̄=R̄analy

(30)

with v > 0 and w > 0, where R̄analy is the radius of the
circular protein cross section, �wv is the Kronecker delta,
and we have defined

D̄q = Kq(
p
⌫̄+r̄)@r̄Kq(

p
⌫̄�r̄) � Kq(

p
⌫̄�r̄)@r̄Kq(

p
⌫̄+r̄) ,

Ēq =
[@r̄Kq(

p
⌫̄+r̄)] [@r̄Kq(

p
⌫̄�r̄)]

D̄q
,

F̄q =
Kq(

p
⌫̄+r̄)Kq(

p
⌫̄�r̄)

D̄q
,

H̄q =
Kq(

p
⌫̄+r̄)@r̄Kq(

p
⌫̄�r̄) + Kq(

p
⌫̄�r̄)@r̄Kq(

p
⌫̄+r̄)

D̄q
,

(31)

where q = 0, 1, . . . , Kq denotes the qth order modified
Bessel function of the second kind, and @r̄ denotes the
partial derivative with respect to r̄. The zeroth order
terms in Eq. (30) are the contributions to Ḡanaly due
to the constant Ū0 and Ū 0

0 in Eqs. (15) and (16), while
the remaining terms encapsulate the e↵ects of the varia-
tions in U(✓) and U 0(✓) in Eqs. (15) and (16) on Ḡanaly.

FIG. 8: Color maps of the bilayer thickness deformation foot-
prints due to clover-leaf protein shapes with (a) R̄ = 1 and (b)
R̄ = 10 in Eq. (17) for s = 5, ✏ = 0.2, Ū� = Ū0� = 0.3 nm in
Eq. (15), and Ū 0 = 0. Panels (c) and (d) show the mean curva-
ture in units of 1/�, H̄ = �H, associated with the thickness
deformation fields in panels (a) and (b), respectively, while
panels (e) and (f) show the corresponding mean curvature
maps obtained for Ū� = Ū0� = �0.3 nm in Eq. (15) rather
than Ū� = Ū0� = 0.3 nm. We set 2ā� = 3.2 nm for all panels.
All results were obtained through the BVM.

We use here Eq. (30) to analytically estimate the bilayer
thickness deformation energy of membrane proteins with
non-circular cross sections. To this end, we choose R̄analy

in Eq. (30) such that the circumference of the circular
membrane inclusion considered in Eq. (30) is equal to
the circumference of the membrane protein under con-
sideration,

R̄analy =
�̄

2⇡
, (32)

where, for the clover-leaf and polygonal boundary curves
in Eqs. (17) and (18) with Eq. (19), the protein circum-

ference � follows from �̄ =
R 2⇡

0
d✓l̄, where, as in Eq. (10),

l̄ is the (dimensionless) line element.
The analytic estimate of the thickness deformation en-

ergy in Eq. (30) captures, for the choice of R̄analy in

Figure 3.1: Color maps of the bilayer thickness deformation footprints due to clover-leaf
protein shapes with (a) R̄ = 1 and (b) R̄ = 10 in Eq. (2.17) for s = 5, ϵ = 0.2, Ūλ = 0.3 nm
in Eq. (2.15), and Ū ′ = 0. Panels (c) and (d) show the mean curvature in units of 1/λ, H̄ =
λH, associated with the thickness deformation fields in panels (a) and (b), respectively,
while panels (e) and (f) show the corresponding mean curvature maps obtained for Ūλ =
−0.3 nm in Eq. (2.15) rather than Ūλ = 0.3 nm. We set 2āλ = 3.2 nm and τ = 0 for all
panels. All results were obtained through the BVM.

protein self-interactions [see Fig. 3.1(a)]. As R̄ is increased, these overlaps in protein-

induced bilayer thickness deformations become less pronounced [see Fig. 3.1(b)]. De-

pending on the value of R̄, one thus obtains distinct distributions of the mean curvature
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of ū about the protein [see Figs. 3.1(c,d)], which also depend on the value and sign of Ū

[see Figs. 3.1(e,f)].

To quantify the protein self-interactions suggested by Fig. 3.1 it is useful to define,

based on Eq. (2.10), the line tension along the bilayer-protein interface,

Λ̄ ≡
[
Ū ′(θ)∇̄2ū− Ū(θ)n̂ · ∇̄3ū

] ∣∣
r̄=C̄(θ)

, (3.4)

where we used Eqs. (2.12) and (2.14) with lateral membrane tension τ = 0. In Figs. 3.2(a)

and 3.2(b) we compare, for the protein shapes in Figs. 3.1(a) and 3.1(b) with constant

Ū > 0 and Ū ′ = 0, the line tensions Λ̄ in Eq. (3.4) and their average values ⟨Λ̄⟩ to

the corresponding Λ̄ associated with Ḡanaly in Eq. (3.1), which we denote by Λ̄analy. As

expected, Fig. 3.2 shows that the variations in Λ̄ are more pronounced for smaller clover-

leaf protein shapes. We also find in Fig. 3.2 that ⟨Λ̄⟩ < Λ̄analy, with a larger
∣∣⟨Λ̄⟩ − Λ̄analy

∣∣

for smaller R̄ in Fig. 3.2.

Interestingly, we can have Λ̄ < 0 in Fig. 3.2(a) for the smaller clover-leaf protein

shape in Fig. 3.1(a), while Λ̄ > 0 in Fig. 3.2(b) for the larger clover-leaf protein shape

in Fig. 3.1(b). The regime with Λ̄ < 0 in Fig. 3.2(a) can be understood by noting that, with

a constant Ū > 0 and Ū ′ = 0, Λ̄ in Eq. (3.4) is directly proportional to the change in the

mean curvature of ū at the protein boundary, in the direction perpendicular to the protein-

bilayer boundary and into the bilayer (−n̂). For the points along the clover-leaf boundary

closest and furthest away from the protein center, n̂ is anti-parallel with the radial di-

rection r̂. For the points along the clover-leaf boundary shape in Figs. 3.1(a) and 3.1(b)
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FIG. 9. Line tension along the bilayer-protein boundary, ⇤̄
in Eq. (33), as a function of ✓ for (a) the protein shape
in Fig. 8(a) and (b) the protein shape in Fig. 8(b), calcu-
lated using the same parameter values as in Fig. 8. The red
dashed lines show the average of ⇤̄(✓) in Eq. (33) over the
interval 0  ✓  2⇡/5, h⇤̄i. The yellow dashed lines show
⇤̄analy = Ḡanaly/�̄, where Ḡanaly is given by Eq. (30) and �̄ is
the protein circumference in Eq. (32).

V. DEPENDENCE OF BILAYER THICKNESS
DEFORMATION ENERGY ON PROTEIN SHAPE

In this section we survey the dependence of the bi-
layer thickness deformation energy in Eq. (3) on the
shape of membrane proteins. In particular, we allow for
three distinct, not mutually exclusive, modes for break-
ing rotational symmetry about the protein center (see
also Sec. II B). In Sec. V A we take the bilayer-protein
boundary conditions to be constant along the protein
circumference, but allow for protein cross sections that
break rotational symmetry about the protein center. In
Sec. V B we explore the e↵ect of variations in the protein
hydrophobic thickness on protein-induced bilayer thick-
ness deformations. Finally, in Sec. VC we study protein-
induced bilayer thickness deformations for proteins that
show variations in the bilayer-protein contact slope along
the bilayer-protein boundary. To test the analytic ap-
proximation of the bilayer thickness deformation energy
described in Sec. IV we compare, for all three scenarios

considered in Secs. VA–V C, our BVM results to the cor-
responding analytic estimates by computing the signed
percent error

⇠G = 100 ⇥ Ḡanaly � Ḡ

Ḡ
, (34)

where Ḡ is the thickness deformation energy in Eq. (6)
obtained through the BVM and the corresponding ana-
lytic estimate Ḡanaly is given by Eq. (30) with Eq. (31).

A. Constant bilayer-protein boundary conditions

In Fig. 10 we consider the energy of protein-
induced bilayer thickness deformations for clover-leaf [see
Figs. 10(a,b,c)] and polygonal [see Fig. 10(d)] protein
shapes as a function of protein size R̄ with a constant
Ū 6= 0 and Ū 0 = 0. Previous work on the bilayer thick-
ness deformations induced by proteins with circular cross
section [12, 30] suggests that, for R̄ � 1, Ḡ increases ap-
proximately linearly with R̄. We find in Fig. 10 that we
also approximately have Ḡ / R̄ for non-circular protein
cross sections, with the (positive) constant of proportion-
ality depending on the protein shape. The analytic es-
timates Ḡanaly obtained from Eq. (30) approximate Ḡ
in Fig. 10 within approximately 10%, with particularly
small magnitudes of the signed percent error ⇠Ḡ for the
polygonal protein shapes in Fig. 10(d). Note that for
protein size R comparable to the decay length � we gen-
erally have ⇠Ḡ > 0 in Fig. 10, indicating that protein
self-interactions tend to lower the energy cost of protein-
induced bilayer thickness deformations.

The energy cost of protein-induced bilayer thickness
deformations depends crucially on the unperturbed lipid
bilayer thickness, which can be varied by changing the
lipid chain length m in Eq. (4) [7, 8, 24, 29]. In Fig. 11
we plot Ḡ for clover-leaf [see Figs. 11(a,b)] and polygonal
[see Fig. 11(c)] protein shapes as a function of lipid chain
length m with Ū 0 = 0. We used a protein hydropho-
bic thickness W̄� = 3.8 nm, which matches the unper-
turbed lipid bilayer thickness for m ⇡ 16. In Fig. 11(a)
we consider clover-leaf protein shapes with di↵erent sym-
metries and the same value of ✏, while in Fig. 11(b) we
consider clover-leaf protein shapes with di↵erent values
of ✏. Similarly as in Fig. 10 we find that deviations from
a circular protein cross section increase Ḡ. Similarly as
in Fig. 10, the dependence of Ḡ on m in Fig. 11 is very
well captured by the analytic approximation Ḡanaly in
Eq. (30), suggesting that the increase in Ḡ for clover-leaf
and polygonal protein cross sections compared to circular
protein cross sections results primarily from the increase
in the length of the bilayer-protein boundary �̄.

In Figs. 10 and 11 we set, in line with previous work on
gramicidin channels and MscL [9, 12, 30], U 0 = 0. How-
ever, the most suitable choice for the boundary condi-
tions on the gradient of u at the bilayer-protein interface
has been a matter of debate [16, 28, 42], and may depend

Figure 3.2: Line tension along the bilayer-protein boundary, Λ̄ in Eq. (3.4), as a function of
θ for (a) the protein shape in Fig. 3.1(a) and (b) the protein shape in Fig. 3.1(b), calculated
using the same parameter values as in Fig. 3.1. The red dashed lines show the average
of Λ̄(θ) in Eq. (3.4) over the interval 0 ≤ θ ≤ 2π/5, ⟨Λ̄⟩. The yellow dashed lines show
Λ̄analy = Ḡanaly/Γ̄, where Ḡanaly is given by Eq. (3.1) and Γ̄ is the protein circumference in
Eq. (3.3).

furthest away from the protein center the mean curvature is negative with the sign conven-

tion used here and decreases in magnitude as one radially moves away from the protein

boundary, yielding Λ̄ > 0 [Figs. 3.1(c,d)]. In contrast, for the points along the clover-leaf

boundary shape closest to the protein center in Fig. 3.1(a) [but not Fig. 3.1(b)], the mean

curvature is approximately zero at the protein boundary and decreases as one radially
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moves away from the protein boundary, yielding Λ̄ < 0. With a different sign convention

for the mean curvature or a protein with a constant Ū < 0 rather than Ū > 0, analogous

considerations apply [Figs. 3.1(e,f)]. Thus, protein self-interactions can effectively lower

the energy cost of protein-induced lipid bilayer thickness deformations, in analogy to the

energetically favorable bilayer-thickness-mediated protein interactions found for identical

membrane proteins in close enough proximity [22, 24, 25, 30, 41, 57, 58, 60, 61, 157,

161, 178–183].

3.2 Dependence of bilayer thickness deformation energy

on protein shape

In this section we survey the dependence of the bilayer thickness deformation energy

in Eq. (2.3) on the shape of membrane proteins. In particular, we allow for three distinct,

not mutually exclusive, modes for breaking rotational symmetry about the protein cen-

ter (see also Sec. 2.1.2). In Sec. 3.2.1 we take the bilayer-protein boundary conditions

to be constant along the protein circumference, but allow for protein cross sections that

break rotational symmetry about the protein center. In Sec. 3.2.2 we explore the effect of

variations in the protein hydrophobic thickness on protein-induced bilayer thickness defor-

mations. Finally, in Sec. 3.2.3 we study protein-induced bilayer thickness deformations for

proteins that show variations in the bilayer-protein contact slope along the bilayer-protein

boundary. To test the analytic approximation of the bilayer thickness deformation energy

described in Sec. 3.1 we compare, for all three scenarios considered in Secs. 3.2.1–3.2.3,
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our BVM results to the corresponding analytic estimates by computing the signed percent

error

ξG = 100× Ḡanaly − Ḡ

Ḡ
, (3.5)

where Ḡ is the thickness deformation energy in Eq. (2.6) obtained through the BVM and

the corresponding analytic estimate Ḡanaly is given by Eq. (3.1) with Eq. (3.2).

3.2.1 Constant bilayer-protein boundary conditions

In Fig. 3.3 we consider the energy of protein-induced bilayer thickness deformations

for clover-leaf [see Figs. 3.3(a,b,c)] and polygonal [see Fig. 3.3(d)] protein shapes as a

function of protein size R̄ with a constant Ū ̸= 0 and Ū ′ = 0. Previous work on the

lipid bilayer thickness deformations induced by proteins with circular cross section [27,

102] suggests that, for R̄ ≫ 1, Ḡ increases approximately linearly with R̄. We find in

Fig. 3.3 that we also approximately have Ḡ ∝ R̄ for non-circular protein cross sections,

with the (positive) constant of proportionality depending on the protein shape. The analytic

estimates Ḡanaly obtained from Eq. (3.1) match Ḡ in Fig. 3.3 within approximately 10%,

with particularly small magnitudes of the signed percent error ξḠ for the polygonal protein

shapes in Fig. 3.3(d). Note that for protein sizes R comparable to the decay length λ we

generally have ξḠ > 0 in Fig. 3.3, indicating that protein self-interactions tend to lower the

energy cost of protein-induced bilayer thickness deformations in Fig. 3.3.

The energy cost of protein-induced bilayer thickness deformations depends crucially

on the unperturbed lipid bilayer thickness, which can be varied by changing the lipid

chain length m in Eq. (2.4) [14, 21, 22, 40]. In Fig. 3.4 we plot Ḡ for clover-leaf [see

55



Figure 3.3: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of protein size R̄ for clover-leaf protein shapes with (a) s = 3,
(b) s = 4, and (c) s = 5 in Eq. (2.17) with the indicated values of ✏, and (d) polygonal
protein shapes with the indicated values of s and P = 5 in Eq. (2.18). For all panels we
set Ū� = 0.3 nm and Ū 0 = 0 and ⌧ = 0. The insets show the signed percent error ⇠G in
Eq. (3.5) for the corresponding analytic approximations Ḡanaly in Eq. (3.1).

Figs. 3.4(a,b)] and polygonal [see Fig. 3.4(c)] protein shapes as a function of the lipid

chain length m with Ū 0 = 0. We used a protein hydrophobic thickness W̄� = 3.8 nm,

which matches the unperturbed lipid bilayer thickness for m ⇡ 16. In Fig. 3.4(a) we con-

sider clover-leaf protein shapes with different symmetries s and the same value of ✏, while

in Fig. 3.4(b) we consider clover-leaf protein shapes with different values of ✏ and the

same symmetry s. Similarly as in Fig. 3.3 we find that deviations from a circular protein
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Figure 3.3: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of protein size R̄ for clover-leaf protein shapes with (a) s = 3,
(b) s = 4, and (c) s = 5 in Eq. (2.17) with the indicated values of ϵ, and (d) polygonal
protein shapes with the indicated values of s and P = 5 in Eq. (2.18). For all panels we
set Ūλ = 0.3 nm and Ū ′ = 0 and τ = 0. The insets show the signed percent error ξG in
Eq. (3.5) for the corresponding analytic approximations Ḡanaly in Eq. (3.1).

Figs. 3.4(a,b)] and polygonal [see Fig. 3.4(c)] protein shapes as a function of the lipid

chain length m with Ū ′ = 0. We used a protein hydrophobic thickness W̄λ = 3.8 nm,

which matches the unperturbed lipid bilayer thickness for m ≈ 16. In Fig. 3.4(a) we con-

sider clover-leaf protein shapes with different symmetries s and the same value of ϵ, while

in Fig. 3.4(b) we consider clover-leaf protein shapes with different values of ϵ and the

same symmetry s. Similarly as in Fig. 3.3 we find that deviations from a circular protein

cross section increase Ḡ. Furthermore, similarly as in Fig. 3.3, the dependence of Ḡ on m
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Figure 3.4: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of lipid chain length m in Eq. (2.4) for (a) clover-leaf protein
shapes with ✏ = 0.3 and the indicated values of s, (b) clover-leaf protein shapes with s = 5
and the indicated values of ✏, and (c) polygonal protein shapes with the indicated values
of s and P = 5 in Eq. (2.18). For all panels we set ⌧ = 0, Ū 0 = 0, W̄� = 3.8 nm in
Eq. (2.13), and R̄� ⇡ 2.3 nm. The insets show the signed percent error ⇠G in Eq. (3.5) for
the corresponding analytic approximations Ḡanaly in Eq. (3.1). We always have

��Ū
�� > 0 for

the m-discretization used here.

cross section increase Ḡ. Furthermore, similarly as in Fig. 3.3, the dependence of Ḡ on m

in Fig. 3.4 is very well captured by the analytic approximation Ḡanaly in Eq. (3.1), suggest-

ing that the increase in Ḡ for clover-leaf and polygonal protein cross sections compared

to circular protein cross sections results primarily from the increase in the length of the

bilayer-protein boundary �̄ due to deviations from a circular protein cross section.
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Figure 3.4: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of lipid chain length m in Eq. (2.4) for (a) clover-leaf protein
shapes with ϵ = 0.3 and the indicated values of s, (b) clover-leaf protein shapes with s = 5
and the indicated values of ϵ, and (c) polygonal protein shapes with the indicated values
of s and P = 5 in Eq. (2.18). For all panels we set τ = 0, Ū ′ = 0, W̄λ = 3.8 nm in
Eq. (2.13), and R̄λ ≈ 2.3 nm. The insets show the signed percent error ξG in Eq. (3.5) for
the corresponding analytic approximations Ḡanaly in Eq. (3.1). We always have

∣∣Ū
∣∣ > 0 for

the m-discretization used here.

in Fig. 3.4 is very well captured by the analytic approximation Ḡanaly in Eq. (3.1), suggest-

ing that the increase in Ḡ for clover-leaf and polygonal protein cross sections compared

to circular protein cross sections results primarily from the increase in the length of the

bilayer-protein boundary Γ̄ due to deviations from a circular protein cross section.

In Figs. 3.3 and 3.4 we set, in line with previous work on gramicidin channels and

MscL [23, 27, 102], U ′ = 0. As noted in Sec. 2.1, however, the most suitable choice for
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FIG. 19: Bilayer thickness deformation energy Ḡ in
Eq. (6) calculated using the BVM (see Sec. III) as a
function of lipid chain length m in Eq. (4) for (a)

clover-leaf protein shapes with ✏ = 0.3 and the indicated
values of s, (b) clover-leaf protein shapes with s = 5 and

the indicated values of ✏, and (c) polygonal protein
shapes with the indicated values of s and P = 5 in

Eq. (18). For all panels we set Ū 0 = 0, W̄� = 3.8 nm in
Eq. (13), and R̄� ⇡ 2.3 nm. The insets show the signed

percent error ⇠G in Eq. (34) for the corresponding
analytic approximations Ḡanaly in Eq. (30). [s rather

than s in (c); Extend y-range slightly so as to fully show
curves at 0.]

FIG. 11. Bilayer thickness deformation energy Ḡ in Eq. (6)
calculated using the BVM (see Sec. III) as a function of lipid
chain length m in Eq. (4) for (a) clover-leaf protein shapes
with ✏ = 0.3 and the indicated values of s, (b) clover-leaf
protein shapes with s = 5 and the indicated values of ✏, and
(c) polygonal protein shapes with the indicated values of s and
P = 5 in Eq. (18). For all panels we set Ū 0 = 0, W̄� = 3.8 nm
in Eq. (13), and R̄� ⇡ 2.3 nm. The insets show the signed
percent error ⇠G in Eq. (34) for the corresponding analytic
approximations Ḡanaly in Eq. (30). We always have |Ū | > 0
for the discretization of the domain of m used for plotting the
curves in all panels here.

consider clover-leaf protein shapes with di↵erent values
of ✏. Similarly as in Fig. 10 we find that deviations from
a circular protein cross section increase Ḡ. Similarly as
in Fig. 10, the dependence of Ḡ on m in Fig. 11 is very
well captured by the analytic approximation Ḡanaly in
Eq. (30), suggesting that the increase in Ḡ for clover-leaf
and polygonal protein cross sections compared to circular

FIG. 12. Bilayer thickness deformation profile ū due to a
protein with circular cross section as a function of the radial
distance from the protein center, r̄ = r/�, obtained from the
exact analytic solution in Eq. (8) with Eq. (9) for the indicated
values of Ū 0. We set Ū� = 0.3 nm and R̄� = 2.3 nm.

protein cross sections results primarily from the increase
in the length of the bilayer-protein boundary �̄.

In Figs. 10 and 11 we set, in line with previous work on
gramicidin channels and MscL [9, 12, 30], U 0 = 0. How-
ever, the most suitable choice for the boundary condi-
tions on the gradient of u at the bilayer-protein interface
has been a matter of debate [16, 28, 42], and may depend
on the particular membrane protein and lipid species un-
der consideration. In particular, U 0 may di↵er from zero
or vary along the bilayer-protein interface, or the gradi-
ent of u at the bilayer-protein interface may satisfy natu-
ral boundary conditions with U 0 being adjusted so as to
minimize the bilayer thickness deformation energy. As
illustrated in Fig. 12 for a membrane protein with circu-
lar protein cross section and constant Ū� = 0.3 nm, the
value of U 0 can have a substantial e↵ect on the shape of
protein-induced lipid bilayer thickness deformations. In
particular, for U 0 ⇡ 0.3 protein-induced bilayer thickness
deformations are seen to decay rapidly in Fig. 12. Plot-

Figure 3.5: Bilayer thickness deformation profile ū due to a protein with a circular cross
section as a function of the radial distance from the protein center, r̄ = r/λ, obtained from
the exact analytic solution in Eq. (2.8) with Eq. (2.9) for the indicated values of Ū ′. We set
Ūλ = 0.3 nm, τ = 0, and R̄λ = 2.3 nm.

the boundary conditions on the gradient of u at the bilayer-protein interface has been a

matter of debate [21–25, 27–31, 39, 102, 118], and is likely to depend on the particular

membrane protein and lipid species under consideration. In particular, U ′ may differ from

zero or vary along the bilayer-protein interface, or U ′ may satisfy natural boundary condi-

tions with U ′ being adjusted so as to minimize the bilayer thickness deformation energy.

As illustrated in Fig. 3.5 for a membrane protein with circular cross section and constant

Ūλ = 0.3 nm, the value of U ′ can have a substantial effect on the shape of protein-induced

lipid bilayer thickness deformations. In particular, for U ′ ≈ 0.3 in Fig. 3.5 protein-induced

lipid bilayer thickness deformations are seen to decay rapidly.

Plotting Ḡ as a function of U ′ for the scenario in Fig. 3.5 (see Fig. 3.6), we find that

Ḡ is minimal for U ′ ≈ 0.28 with, as suggested by Ḡanaly in Eq. (3.1), an approximately

quadratic dependence of Ḡ on U ′. Allowing for non-circular protein cross sections we
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Figure 3.6: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the bilayer-protein contact slope Ū 0 for (a) clover-leaf protein
shapes with ✏ = 0.3 and the indicated values of s, (b) clover-leaf protein shapes with s = 5
and the indicated values of ✏, and (c) polygonal protein shapes with the indicated values
of s and P = 5, and cylindrical protein shapes with a circular cross section of radius
R̄. For all panels we set R̄� = 2.3 nm, Ū� = 0.3 nm, and ⌧ = 0. The insets show the
signed percent error ⇠G in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1).

quadratic dependence of Ḡ on U 0. Allowing for non-circular protein cross sections we

find that the optimal U 0 depends strongly, for large enough ✏, on the symmetry of clover-

leaf protein shapes [see Figs. 3.6(a,b)], but only weakly on the symmetry of polygonal

protein shapes [see Fig. 3.6(c)]. Note that, for clover-leaf protein shapes, the optimal

U 0 tend to shift towards U 0 ⇡ 0 compared to proteins with circular cross section. This
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Figure 3.6: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the bilayer-protein contact slope Ū ′ for (a) clover-leaf protein
shapes with ϵ = 0.3 and the indicated values of s, (b) clover-leaf protein shapes with s = 5
and the indicated values of ϵ, and (c) polygonal protein shapes with the indicated values
of s and P = 5, and cylindrical protein shapes with a circular cross section of radius
R̄. For all panels we set R̄λ = 2.3 nm, Ūλ = 0.3 nm, and τ = 0. The insets show the
signed percent error ξG in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1).

find that the optimal U ′ depends strongly, for large enough ϵ, on the symmetry of clover-

leaf protein shapes [see Figs. 3.6(a,b)], but only weakly on the symmetry of polygonal

protein shapes [see Fig. 3.6(c)]. Note that, for clover-leaf protein shapes, the optimal

U ′ tend to shift towards U ′ ≈ 0 compared to proteins with circular cross section. This

can be understood by noting that, for clover-leaf protein shapes, the effective reduction in

the size of the membrane footprint brought about by U ′ ̸= 0 competes with contributions

to the bilayer thickness deformation energy due to protein self-interactions. Conversely,
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polygonal protein shapes only show weak self-interactions, resulting in minor shifts in

the optimal U ′ compared to proteins with circular cross section. Finally, we note that the

analytic estimates Ḡanaly in Eq. (3.1) tend to become less accurate for larger U ′, with up

to |ξG| ≈ 60% for the clover-leaf and polygonal shapes considered here [Fig. 3.6(insets)].

3.2.2 Variations in protein hydrophobic thickness

Membrane proteins are, in general, expected to show variations in their hydrophobic

thickness along the bilayer-protein interface [184, 185]. For oligomeric membrane pro-

teins, variations in protein hydrophobic thickness are expected to be periodic so as to re-

flect the protein symmetry. We employ here the sinusoidal variations of U(θ) in Eq. (2.15)

as a generic model of variations in protein hydrophobic thickness, in which we denote the

periodicity of U(θ) by w. We focus, for now, on zero bilayer-protein contact slopes, U ′ = 0

in Eq. (2.16), but return to the effects of angular variations in U ′ in Sec. 3.2.3.

Figure 3.7 shows that variations in U(θ) can have a strong impact on the energy cost of

protein-induced bilayer thickness deformations, for non-circular as well as circular protein

cross sections. The analytic estimate Ḡanaly in Eq. (3.1) is seen to approximately capture

Ḡ in Fig. 3.7, but tends to become less accurate as the protein cross section exhibits

greater deviations from a circular shape, with up to |ξG| ≈ 50% for the clover-leaf and

polygonal protein shapes considered here [Fig. 3.7(insets)]. Note that, for large enough

w, Ḡ in Fig. 3.7 scales approximately as w3 for all protein cross sections considered. This

can be understood from Ḡanaly in Eq. (3.1) by noting that Ēw ∼ w3 at large w, and γ̄ = 0 if

U ′ = 0.
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Figure 3.7: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the periodicity in protein hydrophobic thickness, w in
Eq. (2.15), for (a) the clover-leaf protein shapes in Eq. (2.17) with s = 2 and the indicated
values of ✏, (b) the clover-leaf protein shapes in Eq. (2.17) with s = 3 and the indicated
values of ✏, and (c) the polygonal protein shapes in Eq. (2.18) with the indicated values of
s and P = 5. For all panels we set R̄� = 2.3 nm, Ū0� = �0.1 nm, �̄� = 0.5 nm, Ū 0 = 0, and
⌧ = 0. The red dashed lines indicate the asymptotic scaling ⇠ w3. The insets show the
signed percent error ⇠G in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1). In panel (d) we show color maps of the protein-induced bilayer thickness
deformations associated with ✏ = 0.4 in panel (a) at (i) w = 2 and (ii) w = 3, with ✏ = 0.4
in panel (b) at (iii) w = 3 and (iv) w = 4, and with s = 4 in panel (c) at (v) w = 2 and (vi)
w = 3.

w, Ḡ in Fig. 3.7 scales approximately as w3 for all protein cross sections considered. This

can be understood from Ḡanaly in Eq. (3.1) by noting that Ēw ⇠ w3 at large w, and �̄ = 0 if

U 0 = 0.
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Figure 3.7: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the periodicity in protein hydrophobic thickness, w in
Eq. (2.15), for (a) the clover-leaf protein shapes in Eq. (2.17) with s = 2 and the indicated
values of ϵ, (b) the clover-leaf protein shapes in Eq. (2.17) with s = 3 and the indicated
values of ϵ, and (c) the polygonal protein shapes in Eq. (2.18) with the indicated values of
s and P = 5. For all panels we set R̄λ = 2.3 nm, Ū0λ = −0.1 nm, β̄λ = 0.5 nm, Ū ′ = 0, and
τ = 0. The red dashed lines indicate the asymptotic scaling ∼ w3. The insets show the
signed percent error ξG in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1). In panel (d) we show color maps of the protein-induced bilayer thickness
deformations associated with ϵ = 0.4 in panel (a) at (i) w = 2 and (ii) w = 3, with ϵ = 0.4
in panel (b) at (iii) w = 3 and (iv) w = 4, and with s = 4 in panel (c) at (v) w = 2 and (vi)
w = 3.

While, broadly speaking, variations in protein hydrophobic thickness are seen to in-

crease Ḡ in Fig. 3.7 for all protein cross sections considered, the interplay of U(θ) and the

shape of the protein cross section can yield comparatively favorable or unfavorable sce-

narios. For instance, depending on whether adjacent regions of the bilayer-protein bound-

aries in clover-leaf protein shapes yield bilayer thickness deformations of the same sign

[see panels (i) and (iii) in Fig. 3.7(d)] or distinct signs [see panels (ii) and (iv) in Fig. 3.7(d)],
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protein self-interactions can decrease or increase the energy of protein-induced bilayer

thickness deformations. For polygonal protein shapes, we find that scenarios in which the

maxima or minima of U(θ) coincide with the corners of the polygonal shapes [see panel

(v) in Fig. 3.7(d)] tend to be unfavorable from an energetic perspective, as compared

to scenarios in which the extrema of U(θ) tend to occur along the polygonal faces [see

panel (vi) in Fig. 3.7(d)]. However, compared to the clover-leaf protein shapes considered

in Fig. 3.7, the bilayer thickness deformation energy associated with the polygonal protein

shapes in Fig. 3.7 depends only weakly on the interplay between U(θ) and the shape of

the protein cross section.

3.2.3 Variations in bilayer-protein contact slope

Similarly as the variations in U(θ) considered in Sec. 3.2.2, U ′(θ) in Eq. (2.16) will

generally vary along the bilayer-protein interface. Such variations could come about, for

instance, through the protein structure or the binding of peptides to some sections of the

bilayer-protein interface [22, 147]. Alternatively, if the (normal) gradient of ū obeys natural

boundary conditions at the bilayer-protein interface, a non-circular protein cross section

or variations in U(θ) may effectively induce variations in U ′(θ). We employ here the simple

model of U ′(θ) in Eq. (2.16) to explore the effect of variations in U ′(θ) on the energy cost

of protein-induced lipid bilayer thickness deformations. For simplicity we thereby use a

constant Ū > 0.

Figure 3.8 illustrates the impact of variations in U ′(θ) on the energy cost of protein-

induced lipid bilayer thickness deformations. Similarly as in Fig. 3.7, the analytic estimate
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Figure 3.8: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the periodicity in the bilayer-protein contact slope, v in
Eq. (2.16), for (a) the clover-leaf protein shapes in Eq. (2.17) with s = 2 and the indicated
values of ✏, (b) the clover-leaf protein shapes in Eq. (2.17) with s = 3 and the indicated
values of ✏, and (c) the polygonal protein shapes in Eq. (2.18) with the indicated values
of s and P = 5. For all panels we set ⌧ = 0, R̄� = 2.3 nm, Ū� = 0.3 nm, Ū 0

0 = 0, and
�̄ = 0.3. The red dashed lines indicate the asymptotic scaling ⇠ v. The insets show the
signed percent error ⇠G in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1). In panel (d) we show color maps of the protein-induced bilayer thickness
deformations associated with ✏ = 0.4 in panel (a) at (i) v = 2 and (ii) v = 4, with ✏ = 0.4 in
panel (b) at (iii) v = 3 and (iv) v = 4, and with s = 4 in panel (c) at (v) v = 2 and (vi) v = 4.

or variations in U(✓) may effectively induce variations in U 0(✓). We employ here the simple

model of U 0(✓) in Eq. (2.16) to explore the effect of variations in U 0(✓) on the energy cost

of protein-induced lipid bilayer thickness deformations. For simplicity we thereby use a

constant Ū > 0.
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Figure 3.8: Bilayer thickness deformation energy Ḡ in Eq. (2.6) calculated using the BVM
(see Sec. 2.2) as a function of the periodicity in the bilayer-protein contact slope, v in
Eq. (2.16), for (a) the clover-leaf protein shapes in Eq. (2.17) with s = 2 and the indicated
values of ϵ, (b) the clover-leaf protein shapes in Eq. (2.17) with s = 3 and the indicated
values of ϵ, and (c) the polygonal protein shapes in Eq. (2.18) with the indicated values
of s and P = 5. For all panels we set τ = 0, R̄λ = 2.3 nm, Ūλ = 0.3 nm, Ū ′

0 = 0, and
γ̄ = 0.3. The red dashed lines indicate the asymptotic scaling ∼ v. The insets show the
signed percent error ξG in Eq. (3.5) for the corresponding analytic approximations Ḡanaly

in Eq. (3.1). In panel (d) we show color maps of the protein-induced bilayer thickness
deformations associated with ϵ = 0.4 in panel (a) at (i) v = 2 and (ii) v = 4, with ϵ = 0.4 in
panel (b) at (iii) v = 3 and (iv) v = 4, and with s = 4 in panel (c) at (v) v = 2 and (vi) v = 4.

Ḡanaly in Eq. (3.1) is seen to approximately capture Ḡ in Fig. 3.8, but tends to become less

accurate with increasing deviation of the protein cross section from a circular shape, with

up to |ξG| ≈ 40% for the clover-leaf and polygonal shapes considered here [Fig. 3.8(in-

sets)]. Note that, for large enough v, Ḡ in Fig. 3.7 scales approximately linearly with v,

independent of the protein cross section considered. This can be understood from Ḡanaly

in Eq. (3.1) by noting that F̄v ∼ v at large v. In analogy to Fig. 3.7 we find in Fig. 3.8 that,

broadly speaking, variations in U ′(θ) increase Ḡ for all protein cross sections considered.
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However, the interplay of U ′(θ) and the shape of the protein cross section can yield, sim-

ilarly as in Fig. 3.7, comparatively favorable or unfavorable scenarios. In particular, for

the clover-leaf protein shapes in Figs. 3.8(a) and 3.8(b), it tends to be energetically favor-

able for the minima of Ū ′(θ) to coincide with the minima of C̄(θ), so as to make protein

self-interactions more favorable, and the maxima of Ū ′(θ) to coincide with the maxima of

C̄(θ), so as to reduce the protein’s membrane footprint. This configuration is achieved,

for instance, when v = s [see panels (i) and (iii) in Fig. 3.8(d)]. Conversely, it tends to be

energetically unfavorable for the minima of Ū ′(θ) to coincide with the maxima of C̄(θ), and

vice versa, or for Ū ′(θ) and C̄(θ) to be out of phase [see panels (ii) and (iv) in Fig. 3.8(d)].

For the polygonal protein shapes in Fig. 3.8(c), particularly favorable configurations tend

to be achieved when the minima of Ū ′(θ) fall on the polygonal faces, rather than on the

corners of the polygonal shapes [see panels (v) and (vi) in Fig. 3.8(d)].

3.3 Transitions in protein organization and shape

Section 3.2 demonstrates that protein-induced lipid bilayer thickness deformations

show a strong dependence on protein shape, and that changes in protein shape can

bring about changes in the bilayer thickness deformation energy > 10 kBT in magnitude.

In the present section we suggest possible implications of these results for the biophysical

properties of membrane proteins. In particular, Sec. 3.3.1 explores the energetic contri-

bution of lipid bilayer thickness deformations to the self-assembly of protein monomers

into protein oligomers, and how changes in bilayer-protein interactions could destabilize
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protein oligomers. In Sec. 3.3.2 we investigate the effect of lipid bilayer thickness defor-

mations on transitions in protein conformational state that involve substantial changes in

protein shape.

3.3.1 Self-assembly of protein oligomers

Complex molecular architectures of membrane proteins often arise from self-assembly

of small protein subunits (monomers) into protein oligomers [5, 146]. While entropic ef-

fects are generally expected to oppose the self-assembly of membrane protein oligomers,

bilayer-protein interactions can favor or oppose protein oligomerization depending on the

lipid composition, protein shape, and membrane deformation mode considered [22, 24,

25, 30, 41, 57, 58, 60, 61, 157, 158, 161, 170, 178–183, 186–191]. In particular, the

thermodynamic competition between different oligomeric states of membrane proteins

depends crucially on how the energy per protein subunit changes with protein oligomeric

state. If the hydrophobic thickness of the protein oligomers or monomers differs from

the unperturbed hydrophobic thickness of the surrounding lipid bilayer, one set of con-

tributions to the oligomerization energy is expected to arise from protein-induced bilayer

thickness deformations [22, 24, 25, 30, 41, 57, 58, 60, 61, 157, 178–183, 191]. Other

potential contributions to the oligomerization energy can arise, for instance, from lipid tilt

deformations [161, 186, 187].

We illustrate here, in the context of protein-induced lipid bilayer thickness deforma-

tions, how contributions to the oligomerization energy due to bilayer-protein interactions

can be calculated through the BVM. For simplicity, we thereby consider a protein oligomer
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of symmetry s with a clover-leaf or polygonal cross section, and take the s (identical) com-

peting protein monomers to have circular cross sections with the same total area as the

protein oligomer, and no interactions between the monomers. Furthermore, we assume

that the protein oligomers and monomers show constant values of U and U ′ along the

bilayer-protein interface, with identical U for the protein oligomers and monomers and

U ′ = 0 for the protein monomers. These assumptions could easily be lifted to describe

more complex scenarios.

Figure 3.9 shows the difference between the (dimensionless) bilayer thickness defor-

mation energies associated with protein oligomers and their corresponding monomers,

∆Ḡ, as a function of the lipid chain length m [see Fig. 3.9(a)] and the bilayer-oligomer

contact slope U ′ [see Fig. 3.9(b)] for a variety of shapes of the oligomer cross section.

The insets in Fig. 3.9 show the differences in the oligomerization energies obtained from

the analytic approximation Ḡanaly in Eq. (3.1) and the BVM, ∆Ḡξ = ∆Ḡanaly −∆Ḡ. Equa-

tion (3.1) is seen to provide, for modest magnitudes of U and U ′, good estimates of the

oligomerization energy. We generally have ∆G < 0 in Fig. 3.9(a), indicating that protein-

induced lipid bilayer thickness deformations support oligomerization. This can be under-

stood from Ḡanaly by noting that the protein oligomers in Fig. 3.9(a) have a smaller circum-

ference than their corresponding monomers. Interestingly, Fig. 3.9(b) shows that ∆G can

become positive for large enough magnitudes of U ′ for the protein oligomer, which is thus

destabilized. Such a change in U ′ could be achieved, for instance, through a transition

in the conformational state of the oligomer or the binding of peptides to the oligomer [22,

147]. Figure 3.9 therefore suggests that protein-induced bilayer thickness deformations
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FIG. 16. Di↵erence between the bilayer thickness deforma-
tion energies associated with protein oligomers of symmetry
s and their corresponding s monomers, �Ḡ, calculated us-
ing the BVM (see Sec. III) as a function of (a) the lipid
chain length m in Eq. (4) and (b) the (constant) bilayer-
oligomer contact slope U 0 in Eq. (14) for a variety of clover-
leaf (solid curves) and polygonal (dashed curves) shapes of
the protein oligomers. We took the protein monomers to
have circular cross sections with U 0 = 0 and used the in-
dicated values of s, with ✏ = 0.3 for the clover-leaf oligomer
shapes in Eq. (17) and P = 5 for the polygonal oligomer
shapes in Eq. (18). We set R̄ = 1 for the monomer radii,
and used identical cross-sectional areas of the oligomers and
their corresponding monomers. We set U 0 = 0 in panel (a),
2ā� = 3.2 nm in panel (b), and used W̄� = 3.8 nm for the
protein monomers and oligomers in all panels. We always
have |Ū | > 0 for the discretization of the domain of m used
for plotting the curves in panel (a).The schematics in the in-
sets illustrate transitions between monomers and oligomers
for selected oligomeric shapes. The plots in the insets show
the di↵erence in the oligomerization energies obtained from
the analytic approximation Ḡanaly in Eq. (30) and the BVM,
�Ḡ⇠ = �Ḡanaly ��Ḡ, for each curve in the main panels.

cross section. The insets in Fig. 16 show the di↵erences
in the oligomerization energies obtained from the ana-
lytic approximation Ḡanaly in Eq. (30) and the BVM,
�Ḡ⇠ = �Ḡanaly � �Ḡ. Equation (30) is seen to pro-
vide, for modest magnitudes of U and U 0, good esti-
mates of the oligomerization energy. We generally have
�G < 0 in Fig. 16(a), indicating that protein-induced

bilayer thickness deformations support oligomerization.
This can be understood from Ḡanaly by noting that the
protein oligomers in Fig. 16(a) have a smaller circumfer-
ence than their corresponding monomers. Interestingly,
Fig. 16(b) shows that �G can become positive for large
enough magnitudes of U 0 for the protein oligomer, thus
destabilizing the protein oligomer. Such a change in U 0

could be achieved, for instance, through a transition in
the conformational state of the oligomer or the binding
of peptides to the oligomer [8, 68]. Figure 16 thus sug-
gests that protein-induced bilayer thickness deformations
could assist both in the assembly and disassembly of pro-
tein oligomers, and contribute > 10 kBT to the energy
budget of oligomer assembly or disassembly.

B. Transitions in protein conformational state

To perform their biological functions, membrane pro-
teins often have to transition between di↵erent confor-
mational states. Such transitions in protein conforma-
tional state can be accompanied by changes in the cross-
sectional shape of proteins producing, in turn, changes in
protein-induced membrane deformations. Proteins that
deform the bilayer hydrophobic thickness can thus be
regulated by bilayer properties, such as the bilayer hy-
drophobic thickness [7, 8, 29, 72]. We illustrate here how
the BVM can be used to calculate the contribution of
bilayer thickness deformations to the energy di↵erence
between two protein states with distinct cross-sectional
shapes. For simplicity, we thereby take the two states of
the membrane protein to show identical U and U 0 that
are constant along the bilayer-protein interface, and to
have cross-sectional shapes with the same area. These
assumptions could easily be lifted to provide detailed
models of specific conformational transitions in mem-
brane proteins, which may also involve more than just
two protein states.

Figure 17 shows the di↵erence between the bilayer
thickness deformation energies associated with the final
and initial protein shapes indicated in the insets, �Ḡ,
as a function of the lipid chain length m [see Figs. 17(a)
and 17(b)] and the bilayer-protein contact slope U 0 [see
Figs. 17(c) and 17(d)]. The insets in Fig. 17 show the
corresponding di↵erences in the protein transition ener-
gies obtained from the analytic approximation Ḡanaly in
Eq. (30) and the BVM, �Ḡ⇠ = �Ḡanaly � �Ḡ. Simi-
larly as in Fig. 16, Eq. (30) is seen to provide, for mod-
est magnitudes of U and U 0, good estimates of �Ḡ in
Fig. 17. In Figs. 17(a) and 17(c) we consider idealized
scenarios in which the initial protein shape shows a cir-
cular cross section, while the final state corresponds to
a clover-leaf or polygonal shape. We find that bilayer
thickness deformations generally inhibit such transitions
in protein shape, �Ḡ � 0, which is easily understood
from Ḡanaly in Eq. (30) by noting that these transitions in
protein shape are accompanied by an increase in protein
circumference. In Fig. 17(b) we study �Ḡ for transitions

Figure 3.9: Difference between the lipid bilayer thickness deformation energies associ-
ated with protein oligomers of symmetry s and their corresponding s monomers, ∆Ḡ,
calculated using the BVM (see Sec. 2.2) as a function of (a) the lipid chain length m in
Eq. (2.4) and (b) the (constant) bilayer-oligomer contact slope U ′ in Eq. (2.14) for a va-
riety of clover-leaf (solid curves) and polygonal (dashed curves) shapes of the protein
oligomers. We took the protein monomers to have circular cross sections with U ′ = 0
and used the indicated values of s, with ϵ = 0.3 for the clover-leaf oligomer shapes in
Eq. (2.17) and P = 5 for the polygonal oligomer shapes in Eq. (2.18). For both panels, we
set τ = 0. We set R̄λ = 1 nm for the monomer radii, and used identical cross-sectional
areas of the oligomers and their corresponding monomers. We set U ′ = 0 in panel (a),
2āλ = 3.2 nm in panel (b), and used W̄λ = 3.8 nm for the protein monomers and oligomers
in all panels. The schematics in the insets illustrate transitions between monomers and
oligomers for selected oligomeric shapes. The plots in the insets show the difference in
the oligomerization energies obtained from the analytic approximation Ḡanaly in Eq. (3.1)
and the BVM, ∆Ḡξ = ∆Ḡanaly −∆Ḡ, for each curve in the main panels.
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could assist both in the assembly and disassembly of protein oligomers, and contribute

> 10 kBT to the energy budget of membrane protein oligomer assembly or disassembly.

3.3.2 Transitions in protein conformational state

To perform their biological functions, membrane proteins often have to transition be-

tween different conformational states. Such transitions in protein conformational state can

be accompanied by changes in the cross-sectional shape of membrane proteins produc-

ing, in turn, changes in protein-induced lipid bilayer deformations. Membrane proteins

can thus be regulated by lipid bilayer properties, such as the bilayer hydrophobic thick-

ness [14, 21, 22, 192]. We illustrate here how the BVM can be used to calculate the

contribution of lipid bilayer thickness deformations to the energy difference between two

protein states with distinct cross-sectional shapes. For simplicity, we thereby take the

two states of the membrane protein to show identical U and U ′ with U and U ′ both being

constant along the bilayer-protein interface, and to have cross-sectional shapes with the

same area. These assumptions could easily be lifted to provide detailed models of spe-

cific conformational transitions in membrane proteins, which may also involve more than

just two protein states.

Figure 3.10 shows the difference between the lipid bilayer thickness deformation en-

ergies associated with the final and initial protein shapes indicated in the insets, ∆Ḡ,

as a function of the lipid chain length m [see Figs. 3.10(a) and 3.10(b)] and the bilayer-

protein contact slope U ′ [see Figs. 3.10(c) and 3.10(d)]. The insets in Fig. 3.10 show
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Figure 3.10: Difference between the lipid bilayer thickness deformation energies associ-
ated with the final and initial protein shapes indicated in the insets, �Ḡ, calculated using
the BVM (see Sec. 2.2) as a function of (a,b) the lipid chain length m in Eq. (2.4) and (c,d)
the (constant) bilayer-protein contact slope U 0 in Eq. (2.14). The values of ✏ associated
with each clover-leaf shape in Eq. (2.17) are indicated in the insets, while for the polygonal
protein shapes we set P = 5. We set U 0 = 0 in panels (a,b) and 2ā� = 3.2 nm in panels
(c,d), and used W̄� = 3.8 nm and ⌧ = 0 for all panels. The cross sections of all protein
shapes considered here have area ⇡R̄2 with R̄� = 2.3 nm. The plots in the insets show
the differences in the protein transition energies obtained from the analytic approximation
Ḡanaly in Eq. (3.1) and the BVM, �Ḡ⇠ = �Ḡanaly ��Ḡ, for each curve in the main panels.

same area. These assumptions could easily be lifted to provide detailed models of spe-

cific conformational transitions in membrane proteins, which may also involve more than

just two protein states.
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Figure 3.10: Difference between the lipid bilayer thickness deformation energies associ-
ated with the final and initial protein shapes indicated in the insets, ∆Ḡ, calculated using
the BVM (see Sec. 2.2) as a function of (a,b) the lipid chain length m in Eq. (2.4) and (c,d)
the (constant) bilayer-protein contact slope U ′ in Eq. (2.14). The values of ϵ associated
with each clover-leaf shape in Eq. (2.17) are indicated in the insets, while for the polygonal
protein shapes we set P = 5. We set U ′ = 0 in panels (a,b) and 2āλ = 3.2 nm in panels
(c,d), and used W̄λ = 3.8 nm and τ = 0 for all panels. The cross sections of all protein
shapes considered here have area πR̄2 with R̄λ = 2.3 nm. The plots in the insets show
the differences in the protein transition energies obtained from the analytic approximation
Ḡanaly in Eq. (3.1) and the BVM, ∆Ḡξ = ∆Ḡanaly −∆Ḡ, for each curve in the main panels.

the corresponding differences in the protein transition energies obtained from the ana-

lytic approximation Ḡanaly in Eq. (3.1) and the BVM, ∆Ḡξ = ∆Ḡanaly − ∆Ḡ. Similarly as

in Fig. 3.9, Eq. (3.1) is seen to provide, for modest magnitudes of U and U ′, good esti-

mates of ∆Ḡ in Fig. 3.10. In Figs. 3.10(a) and 3.10(c) we consider idealized scenarios in

which the initial protein shape shows a circular cross section, while the final protein state

corresponds to a clover-leaf or polygonal protein shape. We find that bilayer thickness

deformations generally inhibit such transitions in protein shape, ∆Ḡ ≥ 0, which is easily
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understood from Ḡanaly in Eq. (3.1) by noting that these transitions in protein shape are

accompanied by an increase in protein circumference. In Fig. 3.10(b) we study ∆Ḡ for

transitions between proteins with non-circular cross sections. We thereby arranged the

initial and final protein states such that ∆Ḡ ≤ 0. Similarly as in Figs. 3.10(a) and 3.10(c),

the results in Fig. 3.10(b) can be understood by noting that the transitions in protein shape

in Fig. 3.10(b) are accompanied by a decrease in protein circumference. Note, in partic-

ular, that the energetically favorable protein shapes in Fig. 3.10(b) tend to correspond to

polygonal protein shapes or clover-leaf shapes with small ϵ.

Finally, we consider in Fig. 3.10(d) scenarios where the sign of ∆Ḡ does not neces-

sarily follow from the relative protein circumferences of the initial and final protein shapes,

and may not be captured by Ganaly in Eq. (3.1) for all the values of U and U ′ considered

here. In particular, for the dotted teal, green, and red curves in Fig. 3.10(d) we chose the

initial and final protein shapes so that their circumferences lie within 1% of each other, and

the remaining protein shapes so that the final protein shape has a circumference that is

substantially smaller than the circumference associated with the initial protein state, by at

least 6%. The former sets of protein shapes yield a change of sign in ∆Ḡ with U ′. Three

of the latter sets of protein shapes, corresponding to the teal, purple, and dotted purple

curves in Fig. 3.10(d), always yield ∆Ḡ ≤ 0, which can again be understood from Ḡanaly

in Eq. (3.1), while the fourth, corresponding to the pink curve in Fig. 3.10(d), can yield

a change of sign in ∆Ḡ with U ′. In analogy to Fig. 3.9(b) this suggests that, for certain

protein shapes, modification of U ′ in a given (stable) protein conformational state through,

for instance, peptide binding [22, 147] could trigger, mediated by protein-induced bilayer

thickness deformations, a change in the protein conformational state. We note, however,

70



that for the protein shapes considered in Fig. 3.10(d) ∆G exceeds zero by not more than

a few kBT .
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Chapter 4

Thermosensing through membrane mechanics

This chapter proposes and develops a physical mechanism, based on protein-membr-

ane mechanics, for the ability of cells to sense temperature changes, and illustrates and

tests this mechanism in the context of three distinct bacterial and eukaryotic membrane

proteins. In particular, we systematically explore the impact of temperature changes on

the energetic cost of protein-induced lipid bilayer deformations. We begin by introduc-

ing a simple and straightforward temperature-dependent protein-membrane mechanical

model, grounded in empirical data on phospholipid membranes (Sec. 4.1). This model

lays the foundation for understanding how temperature influences protein-induced bilayer

deformations. Next, we delve into how to model transitions in protein shape (Sec. 4.2),

providing a framework for studying how temperature affects protein functionality. We

then present the results of our model (Sec. 4.3), offering insights into the temperature-

dependent activation energy of key sensory proteins, including bacterial chemoreceptors,

MscL, and Piezo. In our discussion section (Sec. 4.4), we explore the implications of

our findings in greater detail and consider their significance. Finally, in our concluding

remarks (Sec. 6.3), we synthesize our findings, derive conclusions, and propose future
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avenues for research within the domain of cellular thermosensation. We use, here, the

term “protein sensor" to refer to a diverse range of temperature-responsive membrane

proteins. In particular, we consider protein sensors that are ion channels, which transition

between closed and open conformations, and chemoreceptors, which transition between

on (ligand bound) and off (no ligand bound) states.

4.1 Modeling the effect of temperature changes on

protein-induced bilayer deformations

We build our description of bilayer-protein interactions, on the established membrane-

mechanical framework [21–23, 27, 28, 32–34, 49, 59, 102, 107, 110, 118, 119, 155,

156] discussed in Chapter 2 and Appendix B.1. For the purposes of this chapter it is

convenient to use dimensional units G/Kb → Ḡ, x/λ → x̄, y/λ → ȳ, u/λ → ū, a/λ → ā,

Ktλ
2/Kb → K̄t, and τλ2/Kb → τ̄ . In particular, a variety of experiments have shown

that bilayer mechanical properties change with temperature [15, 114–117]. A linear fit of

experimental data on DOPC lipid bilayer thickness versus temperature (from Table 1 in

Ref. [116]) yields the lipid bilayer half-thickness

a = −mT + a0, (4.1)

with m = 0.0025 nm/K, and a0 = 2.10 nm for DOPC lipid bilayers*. According to Eq. (4.1)

and the associated experiments on DOPC lipid bilayers, a decreases from a ≈ 1.4 nm

*The variable m in Eq. (4.1) should not be mistaken for the variable m representing the lipid chain length
in Eq. (2.4)—in particular, the lipid chain length Eq. (2.4) is a dimensionless integer.
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to a ≈ 1.3 nm in the temperature range T = 10–50◦C. Similarly, experimental data on

the temperature dependence of the bending rigidity Kℓ
b of DOPC phospholipid bilayers

suggests the phenomenological relation [116]

Kℓ
b = Kℓ

b,rme
ε

kB
( 1
T
− 1

Trm
)
, (4.2)

where kB is Boltzmann’s constant, Kℓ
b,rm = 20 kBTrm is the bilayer bending rigidity at room

temperature, and ε = 7 × 10−21 J, with the energy scale kBTrm = 4.11 × 10−21 J for the

room temperature Trm = 25◦C; here we use the superscript ℓ to denote the lipid bilayer

bending rigidity rather than the bending rigidity of the protein which we discuss, in the

case of Piezo ion channels, in Sec. 4.2.3. In the temperature range T = 10–50◦C, Kℓ
b

decreases from Kℓ
b ≈ 22 kBTrm to Kℓ

b ≈ 18 kBTrm. The above measurements of a and Kℓ
b

allow estimation of the area deformation modulus via

Ka = 6
Kℓ

b

a2
, (4.3)

in accordance with the polymer brush model of the lipid bilayer [40, 116]. Assuming

incompressibility of the lipid tail volume [193], we set, here, the thickness deformation

modulus Kt = Ka. This assumption breaks down at extremely high or low temperatures

at which lipid tails may undergo phase transitions and under high pressure, conditions

affecting the volume and packing of lipid tails. In the temperature range T = 10–50◦C, Kt

then varies from Kt ≈ 68 kBTrm/nm
2 to Kt ≈ 63 kBTrm/nm

2.
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While the values of Kℓ
b and Kt measured for DOPC bilayers [116] are close to those

measured for other phospholipid bilayers [22], bilayer hydrophobic thicknesses can vary

to a greater extent depending on membrane composition. For instance, while (m, a0) =

(0.0025 nm/K, 2.10 nm) in Eq. (4.1) was found to correspond to DOPC bilayers, (m, a0) =

(0.0025 nm/K, 2.45 nm) in Eq. (4.1) yields a lipid bilayer half-thickness a ≈ 1.7 nm at

T = 25◦C, which is consistent with measurements of the lipid bilayer hydrophobic core

half-thickness of the E. coli cytoplasmic (EcoC) membrane [194]. Furthermore, m is

generally also expected to vary with lipid composition. For instance, in Bacillus subtilis

cytoplasmic membranes the membrane thickness was measured to linearly decrease with

temperature with (m, a0) ≈ (0.0087 nm/K, 5.5 nm) [15].

To estimate the dependence of protein-induced lipid bilayer deformations on tempera-

ture changes we insert the empirical relations in Eqs. (4.1)–(4.3) into membrane elasticity

theory discussed in Chapter 2. For simplicity, we thereby focus on the simple special

cases with U = constant and U ′ = 0 [23, 32, 118], while noting that the BVM approach

developed in Chapter 2 could be applied to relax these assumptions. For all our calcu-

lations involving protein-induced lipid bilayer thickness we employ the BVM developed in

Chapter 2, yielding errors of about 0.1% or less in G. For our calculations involving mid-

plane deformations, which we assume to be axisymmetric here, we apply the formalism

described in Appendix B.1.
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4.2 Modeling transitions in protein shape

Changes in protein conformation are often accompanied by changes in protein shape,

which can in turn result in changes in protein-induced lipid bilayer deformations. Seminal

advances in experimental techniques such as x-ray crystallography and cryo-electron mi-

croscopy have significantly enhanced our understanding of membrane protein structure

and the interaction of proteins with lipid bilayers [42–45, 48–53]. Though, in general, there

can be intermediary states between deactivated and activated states of protein sensors,

in our discussion we depict protein sensor activation as a straightforward transition from

an off (closed) conformation to an on (open) conformation. While we recognize that this

portrayal is, in general, a gross oversimplification [27, 59, 195], it effectively captures the

core aspects of the temperature-dependent phenomena under consideration.

To describe the competition between open (on) and closed (off) states of protein sen-

sors, a straightforward two-state Boltzmann model has proven to be useful for the systems

considered here. At the core of this model is the channel opening probability:

Po =
1

1 + e∆G/kBT
, (4.4)

where ∆G is the energy difference between the open and closed states of the bilayer-

protein system. In general, both the lipid bilayer (∆Gℓ) and protein (∆Gp) components

contribute to the total transition energy ∆G between any two protein conformations:

∆G = ∆Gℓ +∆Gp , (4.5)
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where, from here on out, we distinguish the lipid bilayer deformation energy and protein

internal energy with subscripts ℓ and p, respectively, and refer to the system state energy

as G, without any subscripts (or superscripts). Recent studies suggest that ∆Gp may

change significantly with temperature [50–52, 195–206]. Our focus here is to provide es-

timates of temperature-dependence changes in ∆Gℓ, to put into place a framework for

determing whether ∆Gp or ∆Gℓ are dominant for a particular model system. In the follow-

ing subsections we introduce the hydrophobic shape parameters for chemoreceptors and

the ion channels MscL and Piezo, which we use as inputs for our calculations of ∆Gℓ.

4.2.1 Chemoreceptor trimers

Traditionally, chemoreceptors have been recognized for their pivotal role in chemo-

taxis, a process enabling organisms, including bacteria like Escherichia coli, to effectively

navigate their environments by detecting and responding to changes in chemical con-

centrations [207]. Numerous bacteria navigate a diverse range of environments using

whip-like appendages known as flagella, and their movement is orchestrated by signals

received from transmembrane chemoreceptors. This complex sensory system operates

through a sophisticated signaling pathway [6, 45, 208–212]. When a chemoattractant

binds to a chemoreceptor, it initiates a conformational change in the receptor. This, in

turn, inhibits CheA, a kinase protein. CheA stops autophosphorylating and subsequently

stops transferring the phosphate group to another protein called CheY. Dephosphorylated

CheY does not bind to the bacterial flagellar motor and does not induce a change in its

rotation direction. This lack of change in flagellar rotation direction ultimately controls the
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bacterium’s swimming behavior, allowing it to move towards favorable substances and

away from harmful ones with remarkable precision in diverse environments.

Chemoreceptors have a conical shape and therefore induce midplane/curvature de-

formations in the surrounding lipid bilayer. However, a previous study [57] suggests that

contributions due to bilayer midplane deformations typically amount to much less than

1 kBTrm, an order of magnitude or more smaller than the contribution from bilayer thick-

ness deformations. In the context of chemoreceptors, we therefore focus on protein-

induced bilayer thickness deformations. Structural protein shape data collected by previ-

ous experiments suggest that the hydrophobic thicknesses of chemoreceptor on (ligand

bound) and off (no ligand bound) states are about Woff = 4.21 nm and Won = 4.05 nm

[57, 213]. Thus, both states lead to a hydrophobic thickness mismatch U in Eq. (2.13)

with U < a for bilayer half-thicknesses a = 1.35 nm and a = 1.7 nm, which approximately

correspond to DOPC [116] and EcoC [194] membranes, respectively. This suggests that

chemoreceptor-induced bilayer thickness deformations u satisfy |u| < a and |∇u| < 1,

and we may use Eq. (2.3) to accurately estimate bilayer deformation contributions to the

chemoreceptor activation energy.

To utilize Eq. (2.3), we specify the boundary conditions in Eqs. (2.12)–(2.14), namely U

and the protein-bilayer cross-section boundary curve C(θ) set by the shape of chemore-

ceptors. In particular, we consider chemoreceptor proteins that are oligomers composed

of three smaller dimer proteins [45]. Based on cryoelectron tomography images, a sim-

ple coarse-grained model suggests that these chemoreceptor trimers exhibit a roughly

three-leaf clover cross-sectional shape, with their hydrophobic thickness decreasing upon

activation [57, 213]. This behavior resembles that of a button or switch. We describe
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Figure 4.1: Schematic views of our hydrophobic shape model for chemoreceptor trimers.
The molecular model of the chemoreceptor trimer in panel (a) is taken from Ref. [45] and
the adjacent clover boundary curve was derived from Eq. (2.17) with Ron/o↵ = 3.1 nm,
son/o↵ = 3, and ✏on/o↵ = 0.2 for both the on and off states. In panel (b), the decrease in
chemoreceptor trimer hydrophobic thickness when activated is illustrated (not to scale)
with Won = 4.05 nm and Wo↵ = 4.21 nm in Eq. (2.13) for the on and off states.

During the transition from the closed (“off") state to the open (“on") state, structural

studies suggest MscL changes its cross-sectional area Ap from Ap,o↵ = ⇡R02
o↵ to Ap,on =

⇡R02
on with, approximately, R0

o↵ = 2.3 nm and R0
on = 3.5 nm. The shape of closed, pen-

tameric MscL, C(✓), resembles a 5-leaf clover with s = 5 and ✏ = 0.22 in Eq. (2.17).

Based on previous structural models, we take here the open state of MscL to have a

five-leaf clover cross-sectional shape C(✓) with s = 5 and ✏ = 0.11 [59].

The alteration in MscL’s cross-sectional dimensions and the closed-state hydropho-

bic thickness, measured at around Woff = 3.8 nm using its resolved structure [42, 27,

59], is well-documented. However, the precise hydrophobic thickness of its open state is

still undetermined. Though several studies have suggested a likely decrease in MscL’s

hydrophobic thickness upon activation [42, 91, 208, 59], the extent of this reduction re-

mains undetermined. To address this uncertainty, we explore two distinct possibilities.
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Figure 4.1: Schematic views of our hydrophobic shape model for chemoreceptor trimers.
The molecular model of the chemoreceptor trimer in panel (a) is taken from Ref. [45] and
the adjacent clover boundary curve was derived from Eq. (2.17) with Ron/off = 3.1 nm,
son/off = 3, and ϵon/off = 0.2 for both the on and off states. In panel (b), the decrease in
chemoreceptor trimer hydrophobic thickness when activated is illustrated (not to scale)
with Won = 4.05 nm and Woff = 4.21 nm in Eq. (2.13) for the on and off states.

the cross-section shape of clover-leaf proteins using Eq. (2.17) with the estimated shape

parameters ϵ = 0.2, R = 3.1 nm, and s = 3 for both chemoreceptor off and on states [57,

213]. We show schematics of our shape model for chemoreceptor trimer on and off states

in Figure 4.1.

4.2.2 MscL

Mechanosensitive channels are vital components for the cellular membranes, serving

a crucial role in responding to mechanical stresses and preserving cell integrity. Among

these channels, MscL emerges as a pivotal figure in the cellular physiology of bacteria.

The prominence of MscL becomes evident when bacteria face a sudden drop in external

osmolarity, leading to rapid water influx and subsequent cell swelling [8]. As this water

influx causes the cell’s volume to expand, the lipid bilayer of the cell membrane stretches

and distorts, resulting in increased membrane tension. In response to this mechanical

challenge, MscL assumes a pivotal role in preventing cell rupture and potential cell death.

MscL possesses the remarkable ability to sense alterations in membrane tension, forming
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a channel within the lipid bilayer akin to a safety valve. When the membrane tension

exceeds a critical threshold due to hypoosmotic shock, MscL undergoes a conformational

change, creating a pore-like structure within the membrane. This newly formed pore

expedites the rapid efflux of solutes, including ions and osmolytes, which in turn reduces

internal osmolarity and facilitates the exit of water, thus restoring the cell to its normal

volume. Notably, MscL’s opening is swift and reversible, ensuring its effectiveness under

various mechanical stress conditions.

For MscL, we focus on its homopentamer homolog found in Myobacterium Tuberculo-

sis. While MscL’s closed state has been solved using x-ray crystallography techniques, its

open state is still unresolved. However, several structural models have been proposed,

analyzed, and show promising agreement with experimental data [14, 27, 59, 89, 91, 102,

168, 214].

During the transition from the closed (“off") state to the open (“on") state, structural

studies suggest MscL changes its cross-sectional area Ap from Ap,off = πR′2
off to Ap,on =

πR′2
on with, approximately, R′

off = 2.3 nm and R′
on = 3.5 nm. The shape of closed, pen-

tameric MscL, C(θ), resembles a 5-leaf clover with s = 5 and ϵ = 0.22 in Eq. (2.17).

Based on previous structural models, we take here the open state of MscL to have a

five-leaf clover cross-sectional shape C(θ) with s = 5 and ϵ = 0.11 [59].

The alteration in MscL’s cross-sectional dimensions and the closed-state hydropho-

bic thickness, measured at around Woff = 3.8 nm using its resolved structure [27, 42,

59], is well-documented. However, the precise hydrophobic thickness of its open state is

still undetermined. Though several studies have suggested a likely decrease in MscL’s
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Figure 4.2: Schematic views of our hydrophobic shape model for MscL. The molecular
models of MscL’s closed and open states in panel (a) are taken from Ref. [59] and the
superimposed clover boundary curves were derived from Eq. (2.17) with Ro↵ ⇡ 2.27 nm
and Ron ⇡ 3.49 nm, son/o↵ = 5, and ✏o↵ = 0.22 and ✏on = 0.11 for both the off (closed) and
on (open) states. In panel (b), we show our model for MscL which ignores any change
in hydrophobic thickness (not to scale) with Won = Wo↵ = 3.8 nm in Eq. 2.13 for the on
and off states. In panel (c), we show our model for MscL with a decrease in hydrophobic
thickness (not to scale) when activated with Won = 2.5 nm and Wo↵ = 3.8 nm in Eq. 2.13
for the on and off states.

cap of area Scap = 450 nm2, protruding into the cytoplasm, and with a radius of curvature

R. Piezo is believed to gate through a membrane dome mechanism [49, 209, 107, 110,

111], where membrane tension stabilizes Piezo towards a flatter state. In its closed state,

Piezo thereby exhibits a smaller in-plane area compared to its flatter state when open,

akin to MscL gating which also exhibits an in-plane area expansion upon opening from
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Figure 4.2: Schematic views of our hydrophobic shape model for MscL. The molecular
models of MscL’s closed and open states in panel (a) are taken from Ref. [59] and the
superimposed clover boundary curves were derived from Eq. (2.17) with Roff ≈ 2.27 nm
and Ron ≈ 3.49 nm, son/off = 5, and ϵoff = 0.22 and ϵon = 0.11 for both the off (closed) and
on (open) states. In panel (b), we show our model for MscL which ignores any change
in hydrophobic thickness (not to scale) with Won = Woff = 3.8 nm in Eq. 2.13 for the on
and off states. In panel (c), we show our model for MscL with a decrease in hydrophobic
thickness (not to scale) when activated with Won = 2.5 nm and Woff = 3.8 nm in Eq. 2.13
for the on and off states.

hydrophobic thickness upon activation [42, 59, 91, 214], the extent of this reduction re-

mains undetermined. To address this uncertainty, we explore two distinct possibilities.

First, we focus on the change in the cross-sectional shape of MscL, ignoring the possi-

ble change in its hydrophobic thickness [102]. In this case, we maintain the thickness at

Won = 3.8 nm for the open state. in its open state MscL has a decreased hydrophobic

thickness, Won = 2.5 nm [42, 59, 91, 214]. We show schematics of our shape model for

MscL on and off states in Figure 4.2.

For MscL, the lipid bilayer contribution ∆Gℓ to the gating energy ∆G accounts for

changes in the deformation of the lipid bilayer surrounding MscL, ∆GM
ℓ . It also ac-

counts for the work performed on the lipid bilayer under membrane tension as MscL

expands its cross-sectional area to open up a pore in the membrane, ∆Gτ
ℓ = −τ∆Ap

with ∆Ap ≈ 22 nm. Estimates of ∆GM
ℓ [27] suggest that the impact of MscL-induced bi-

layer midplane deformations on the gating energy of MscL is less than 1 kBTrm, with the

bilayer thickness deformation contribution being an order of magnitude or more larger.
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Similarly to chemoreceptors, the hydrophobic thickness of MscL is expected to be near

that of DOPC and EcoC membranes. We therefore focus here on contributions to the gat-

ing energy of MscL due to small protein-induced bilayer thickness deformations. Thus, we

utilize Eq. (2.3), with the hydrophobic shape parameters discussed above, incorporated

into the boundary conditions outlined in Eqs. (2.12)–(2.14) with Eq. (2.17), to estimate

∆GM
ℓ .

4.2.3 Piezo

Since its discovery in 2010 [215], Piezo, a mechanosensor of eukaryotes, has emerged

as a pivotal player in numerous physiological processes. For example, Piezo is located

within the membranes of endothelial cells lining blood vessels [216]. When blood pres-

sure rises from an acute increase in blood flow, causing increased shear stress on vessel

walls, Piezo is activated due to elevated membrane tension. This activation appears to set

off a cascade of events beginning with an increase in intracellular calcium concentration

[217]. Piezo-induced calcium influx triggers intracellular signaling pathways leading to the

production and release of nitric oxide (NO) by endothelial cells. NO, a potent vasodilator,

relaxes smooth muscle cells in blood vessel walls, resulting in vasodilation. This, in turn,

leads to reduced peripheral resistance and the regulation of blood pressure.

Recently, an in-depth investigation into the free membrane shape of lipid bilayer vesi-

cles containing Piezo has yielded excellent agreement between the membrane footprint

model [32, 38, 49, 107, 110, 111] and experimental data [110]—without any free param-

eters. These findings underscore specific characteristics of Piezo, including its intrinsic
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curvature, membrane footprint, low stiffness, and expansive surface area. These features

collectively contribute to Piezo’s remarkable ability for low-threshold, high-sensitivity me-

chanical gating [111], providing compelling evidence of the intricate connection between

Piezo’s functionality and membrane mechanical properties.

Piezo’s shape [218] has been determined through cryoelectron tomography experi-

ments in lipid vesicles of different sizes, and a theoretical analysis [111] provided pre-

dictions for Piezo’s shape in cell membranes. In its closed state, Piezo is described as

having an intrinsic protein radius of curvature Rp
0 = 10.2 nm and a room temperature bend-

ing rigidity Kp
b (T = Trm) ≈ 20 kBTrm. Piezo bends the lipid bilayer to form a dome shape,

composed of 25% protein and 75% lipid bilayer, that can be approximated as a spherical

cap of area Scap = 450 nm2, protruding into the cytoplasm, and with a radius of curvature

R [111]. Piezo is believed to gate through a membrane dome mechanism [49, 107, 110,

111, 218], where membrane tension stabilizes Piezo towards a flatter state. In its closed

state, Piezo thereby exhibits a smaller in-plane area compared to its flatter state when

open, akin to MscL gating which also exhibits an in-plane area expansion upon opening

from tension.

The boundary conditions at the Piezo dome-free membrane interface can be ex-

pressed in terms of Piezo’s dome shape parameters R and Scap [see also Eq. (B.1) in

Appendix B.1], the cap angle

α = cos−1

(
1− Scap

2πR2

)
, (4.6)
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Figure 4.1: Chemoreceptor’s membrane footprint contribution to chemoreceptor’s activa-
tion energy estimated using Eq. (2.6) with ⌧ = 0 in (a) DOPC and (b) EcoC membranes
as a function of membrane temperature. Calculations using the clover-leaf cross-section
shape model described in Sec. 4.2.1 are shown in solid lines while the dashed lines in-
corporated a cylinder shape model with the protein on and off states having equivalent
cross-section areas to the corresponding clover cross-section shapes. The color legend
beneath the panels indicates which parameters were assigned the temperature depen-
dencies of Eqs. (4.1)–(4.3) for DOPC lipid bilayers [116], where in (b) EcoC membrane,
a was modified using a0 = 2.45 nm in Eq. (4.1), and a, K`

b , and Kt were assigned their
respective values at room temperature Trm = 25�C whenever held constant. In panel (b),
the lightly shaded region depicts clover model �GM solutions in which we varied m in
Eq. (4.1) by 50% and the overlapping darker shaded region represents �GM with varia-
tions in " by 50%.

Following previous work [110, 111], we take the closed and open states of the Piezo dome

to have the same area, with a radius of curvature

Ro↵ = Rp
0(1 + 3K`

b/K
p
b ) (4.9)
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Figure 4.3: Cross-sectional view of Piezo-induced membrane deformations (adapted from
Ref. [107]). The Piezo dome resembles a spherical cap with a fixed area Scap = 450 nm2.
Key parameters include R (radius of curvature), h = h0 and r = r0 (central pore axis and
radial coordinates at s = 0), s (arclength along Piezo’s membrane footprint profile, s = 0
at the dome interface, s > 0 away from the dome), and α (cap angle). Deformations are
assumed to diminish towards a flat membrane shape for large s.

in-plane cap radius

r0 = R sinα , (4.7)

and central pore axis coordinate of the interface of the Piezo dome and surrounding mem-

brane

h0 = −R cosα . (4.8)

Following previous work [110, 111], we take the closed and open states of the Piezo dome

to have the same area, with a radius of curvature

Roff = Rp
0(1 + 3Kℓ

b/K
p
b ) (4.9)

in the closed state and Ron = ∞ in the open state. Figure 4.3 depicts the Piezo dome

shape model and the membrane deformation profile using the arclength parametrization.
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In our model, the activation energy of Piezo can be decomposed into several contribu-

tions. There are energetic contributions associated with flattening the deformations in the

surrounding lipid bilayer ∆GM
ℓ and the flattening of the Piezo dome ∆Gcap. We estimate

∆GM
ℓ using Eq. (B.1).

∆Gcap can be further decomposed into three separate contributions. One contribu-

tion comes from the change in the bilayer’s in-plane area, under membrane tension, in

flattening the Piezo dome,

∆Gτ
cap = −τ∆Acap , (4.10)

where ∆Acap = S2
cap/4πR

2
off . Another contribution comes from bending the lipid bilayer

part of the Piezo dome in to a flat configuration,

∆Gb
ℓ,cap = −0.75

Kℓ
b

2
Scap

(
2

Roff

)2

, (4.11)

with lipid bilayer bending rigidity Kℓ
b . K

ℓ
b varies with temperature according to the relation-

ship in Eq. (4.2).

The final contribution comes from bending Piezo’s arms into a flat configuration,

∆Gb
p,cap = 0.25

Kp
b

2
Scap

[(
2

Rp
0

)2

−
(

2

Rp
0

− 2

Roff

)2
]
, (4.12)

with the piezo protein bending rigidity Kp
b . Kp

b was previously measured to be similar to Kℓ
b

at room temperature [111], so we maintain Kp
b (T = Trm) = Kℓ

b,rm = 20 kBTrm. Currently, to

our knowledge, there is no available data on how Kp
b changes with temperature. However,

in the study of soft materials, it is generally anticipated that material rigidity decreases with
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increasing temperature, particularly over the range T = 10–50◦C. Given the uncertainty

regarding the impact of changes in temperature onKp
b , we examined several different sce-

narios. The simplest approach is to assume Kp
b is independent of temperature [maintain

Kp
b (T ) = 20 kBTrm]. Alternatively, since Kp

b = Kℓ
b at room temperature, this may indicate

temperature effects Kp
b similarly as Kℓ

b , so we also explore Kp
b (T ) = Kℓ

b(T ). Additionally,

we also consider the possibility of Kp
b having a stronger dependence on temperature than

Kℓ
b , in particular, twice as strong. So we set Kp

b (T ) = Kℓ
b(2ε→ ε, T )†.

4.3 Temperature-sensing through chemoreceptors and

ion channels

4.3.1 Chemoreceptor activation

Based on the phenomenological relations in Eqs. (4.1)–(4.3), we have employed a sim-

ple membrane-mechanical model to estimate how changes in temperature might impact

the activation of chemoreceptor trimers. Specifically, we have calculated the lipid bilayer

deformation energy contribution ∆Gℓ from the membrane surrounding the chemoreceptor

to the transition from its off to on state. Though contributions due to membrane tension,

namely changes in the bilayer’s in-plane area and stretching deformations tangential to

the bilayer leaflet surfaces in Eq. (2.3), can in general vary with temperature [113], their ef-

fect on the chemoreceptor activation energy is expected to be negligible in comparison to

†Kℓ
b(2ε → ε, T ) = Kℓ

b,rme
2ε
kB

( 1
T − 1

Trm
).
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that of the hydrophobic thickness mismatch [57]. For this reason we ignore contributions

due to membrane tension by setting τ = 0.

We find that ∆Gℓ decreases by roughly 8 kBTrm (equivalent to a decrease of approxi-

mately 14%) as temperature rises within the range of T = 10–50◦C in a DOPC bilayer [il-

lustrated by the solid red curve in Fig. 4.4(a)]. To measure the impact of protein shape on

these results, we performed analogous calculations using a circular cross-section with an

area equivalent to that of the clover-leaf protein cross-section. The model of the chemore-

ceptor trimer with a circular cross-section yields a comparable shift in activation energy

due to temperature increases over the same range, T = 10–50◦C [represented by the red

dashed curve in Fig. 4.4(a)], signifying that our results do not depend significantly on the

variations in cross-section shape of chemoreceptor trimers.

Furthermore, the decrease in ∆Gℓ with rising temperature implies that the energy of

the chemoreceptor trimer in the off state increases relative to its on state as temperature

increases, ultimately favoring the chemoreceptor trimer’s on state. The physical origin of

these results lies in the significant energetic penalty associated with the chemoreceptor

trimer hydrophobic thickness mismatch with the bilayer’s unperturbed hydrophobic core

in Eq. (2.3) (see Sec. 3.1 for details) [57, 59]. Note that if, the sole effect of temperature

was a reduction in bending rigidity, Kℓ
b , [as depicted by the cyan curve in Fig. 4.4(a)]

or a decrease in thickness deformation modulus, Kt, [illustrated by the purple curve in

Fig. 4.4(a)], then an increase in temperature would produce the opposite effect, favoring

the off state with increasing temperature. In contrast, if rising temperature only caused a

reduction in bilayer thickness, 2a, the chemoreceptor trimer would remain biased towards
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Figure 4.4: Estimates of the lipid bilayer deformation contribution to the chemoreceptor
activation energy obtained using Eq. (2.3) with τ = 0, are depicted for (a) DOPC and
(b) EcoC membranes, as a function of temperature. Solid lines represent calculations
employing the clover-leaf chemoreceptor trimer cross-section shape model described in
Sec. 4.2.1, while dashed lines incorporate a cylinder cross-section shape with chemore-
ceptor trimer on and off states possessing equivalent cross-section areas to the corre-
sponding clover cross-section shapes. The color legend below the panels indicates which
parameters (a, Kℓ

b , or Kt) were assigned the temperature relations in Eqs. (4.1)–(4.3) for
DOPC lipid bilayers [116] and, by omission, which of these parameters were held con-
stant at their respective values at room temperature Trm = 25◦C. In (b) EcoC membranes,
a was modified using a0 = 2.45 nm in Eq. (4.1). In panel (b), the lightly shaded region
depicts the clover model solutions, with a 50% variation in m in Eq. (4.1), and the overlap-
ping darker shaded region represents solutions with variations in ε by 50%.
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the on state. Thus, the predicted bias of chemoreceptors towards the on state can be

explained from the decrease in bilayer hydrophobic thickness with increasing temperature.

The dependence of the temperature variations on membrane thickness follows directly

from the bilayer deformation energy’s quadratic dependence on hydrophobic thickness

mismatch U in Eq. (2.3) (see Chapter 3). The hydrophobic thicknesses of chemorecep-

tor trimers are larger than those of DOPC membranes, with the off state having a larger

protein hydrophobic thickness compared to the on state. As the bilayer thins with rising

temperature, U increases for both chemoreceptor off and on states by the same amount.

However, the change in U2 is greater for the chemoreceptor off state, resulting in a more

substantial alteration in the energetic cost for the bilayer-chemoreceptor off state relative

to the on state. Consequently, membrane thinning leads to a bias towards the chemore-

ceptor’s on state‡. From this standpoint, chemoreceptor trimer switching conceptually

resembles the gating of mechanosensitive ion channels, where the gating tension was

observed to depend on lipid tail length [14].

Up to this point, we have assumed that the bilayer is DOPC. However, the measured

hydrophobic thicknesses of DOPC bilayers [116] are less than the estimated hydrophobic

thickness of the EcoC membrane. To account for an EcoC membrane, we have mod-

ified the relation in Eq. (4.1) as outlined in Sec. 4.1. Subsequently, we have recalcu-

lated the switching energy curves displayed in Fig. 4.4(a) [see Fig. 4.4(b)]. Our results

in EcoC membranes exhibit qualitative similarity to those in DOPC membranes, with a
‡A similar biasing would emerge if 2a > Woff < Won or Woff > 2a > Won. If Woff > 2a > Won, a

decrease in a would reduce the hydrophobic mismatch, in Eq. (2.13), of the chemoreceptor trimer on state
while increasing the hydrophobic mismatch of the off state, which would yield a more substantial biasing
towards the chemoreceptor trimer on state. This implies that Woff > Won ensures that the decrease in
membrane thickness with increasing temperature biases chemoreceptor trimers to the on state.
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bias towards the chemoreceptor’s on state at higher temperatures stemming from mem-

brane thinning. Our model’s predicted temperature-dependent ∆Gℓ for chemoreceptors

in EcoC membranes decreases by approximately 6 kBTrm (equivalent to a decrease of

approximately 27%) over the temperature range T = 10–50◦C [demonstrated by the solid

red curve in Fig. 4.4(b)]. The predicted temperature-induced biasing of chemoreceptors

towards their on state persists even under perturbations to the temperature-dependent

relationship strength parameters, m = 0.0025nm/K [indicated by the light shaded region

in Fig.4.4(a)], and ε = 7 × 10−21J [depicted by the dark shaded region in Fig.4.4(a)], in

Eqs. (4.1)–(4.2), by up to 50%. This indicates that comparable outcomes are anticipated

in membranes with somewhat different lipid compositions.

4.3.2 MscL gating

Much like in the case of chemoreceptors, we have utilized Eqs. (2.3), (2.11)–(2.14),

(2.17), and (4.1)–(4.3), but this time incorporating the protein shape models for MscL [58,

59, 102], detailed in Section 4.2.2, to estimate the lipid bilayer deformation contribution

∆Gℓ towards MscL’s gating energy.

To focus on the temperature dependent bilayer mechanical parameters in Eqs. (4.1)–

(4.3) (a,Kℓ
b , Kt), we ignored membrane tension by setting τ = 0. Thus, we set ∆Gℓ =

∆GM
ℓ |τ=0. Given that the cross-section boundary curve of MscL’s open (on) state has a

greater circumference than that of its off state, ∆Gℓ > 0 (see Sec. 3.3.2 for details). If

MscL’s hydrophobic thickness does not change when activated and MscL’s hydrophobic

thickness is greater than that of the lipid bilayer’s unperturbed thickness, such as in DOPC
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and EcoC membranes, the hydrophobic thickness mismatch U in Eq. (2.13) increases as

the membrane’s unperturbed hydrophobic thickness decreases with increasing tempera-

ture. We also have the approximate scaling ∆Gℓ ∼ U2 (see Sec. 3.1). We find that, due to

an increase in hydrophobic thickness mismatch, ∆Gℓ increases with increasing tempera-

ture. Note that if, the only effect of temperature was a decrease in bending rigidity, Kℓ
b , [as

depicted by the cyan curves in Figs. 4.5(a) and (b)] or a decrease in thickness deforma-

tion modulus, Kt, [illustrated by the purple curves in Fig. 4.5(a) and (b)], then an increase

in temperature would produce the opposite effect, favoring the open (on) state with in-

creasing temperature. In contrast, if increasing temperature only caused a decrease in

the bilayer’s unperturbed thickness, 2a, MscL would remain biased towards the closed

(off) state. Thus, our model predicts a bias in MscL towards the closed (off) state which

can be explained from the decrease in the bilayer’s unperturbed hydrophobic thickness

with increasing temperature §. Since DOPC membranes being thinner than EcoC bilay-

ers, MscL has a larger hydrophobic mismatch in a DOPC bilayer. So ∆Gℓ increases by a

larger amount with increasing temperature in DOPC membranes. In particular, we found

∆Gℓ increases by about 14 kBTrm in a DOPC bilayer, compared to 4 kBTrm in an EcoC

bilayer, with increasing temperature over the range T = 10–50◦C.

If we, instead, assume Won = 2.5 nm [58, 59], we have Woff > 2a > Won in DOPC and

EcoC membranes. So as the membrane hydrophobic thickness decreases, U increases

with respect to the closed state and decreases with respect to the open state. Given

the approximate scaling Gℓ ∼ U2 (see Sec. 3.1), as membrane hydrophobic thickness

§Conversely, if the bilayer’s unperturbed thickness were greater than MscL, U would decrease as the
bilayer thins with increasing temperature, reducing ∆Gℓ.
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Figure 4.5: Estimates of the lipid bilayer deformation contribution to MscL’s activation en-
ergy obtained using Eq. (2.3) with ⌧ = 0, are depicted for (a,c) DOPC and (b,d) EcoC
membranes, as a function of temperature. In panels (a,b) we set Wo↵ = Won = 3.8 nm
in Eq. (2.13), and in panels (c,d) we set Wo↵ = 3.8 nm and Won = 2.5 nm. In all
panels, solid lines represent calculations employing the clover-leaf MscL cross-section
shape models for MscL’s open (on) and closed (off) states described in Sec. 4.2.2, while
dashed lines incorporate a cylinder cross-section shape with MscL opened (on) and
closed (off) states possessing equivalent cross-section areas to the corresponding clover
cross-section shapes. The color legend below the panels indicates which parameters
(a, K`

b , or Kt) were assigned the temperature relations in Eqs. (4.1)–(4.3) for DOPC lipid
bilayers [116] and, by omission, which of these parameters were held constant at their
respective values at room temperature Trm = 25�C. In (b,d) EcoC membranes, a was
modified using a0 = 2.45 nm in Eq. (4.1). In panels (b,d), the lightly shaded region depicts
the clover model solutions, with a 50% variation in m in Eq. (4.1), and the overlapping
darker shaded region represents solutions with variations in " by 50%.
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Figure 4.5: Estimates of the lipid bilayer deformation contribution to MscL’s activation en-
ergy obtained using Eq. (2.3) with τ = 0, are depicted for (a,c) DOPC and (b,d) EcoC
membranes, as a function of temperature. In panels (a,b) we set Woff = Won = 3.8 nm
in Eq. (2.13), and in panels (c,d) we set Woff = 3.8 nm and Won = 2.5 nm. In all
panels, solid lines represent calculations employing the clover-leaf MscL cross-section
shape models for MscL’s open (on) and closed (off) states described in Sec. 4.2.2, while
dashed lines incorporate a cylinder cross-section shape with MscL opened (on) and
closed (off) states possessing equivalent cross-section areas to the corresponding clover
cross-section shapes. The color legend below the panels indicates which parameters
(a, Kℓ

b , or Kt) were assigned the temperature relations in Eqs. (4.1)–(4.3) for DOPC lipid
bilayers [116] and, by omission, which of these parameters were held constant at their
respective values at room temperature Trm = 25◦C. In (b,d) EcoC membranes, a was
modified using a0 = 2.45 nm in Eq. (4.1). In panels (b,d), the lightly shaded region depicts
the clover model solutions, with a 50% variation in m in Eq. (4.1), and the overlapping
darker shaded region represents solutions with variations in ε by 50%.

decreases with increasing temperature, Gℓ,on decreases while Gℓ,off increases, yielding

a decrease in ∆Gℓ. In DOPC, we find that ∆Gℓ decreases by about 63 kBTrm and in

EcoC, that ∆Gℓ decreases by about 55 kBTrm with increasing temperature over the range

T = 10–50◦C.
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We performed analogous calculations using a circular cross-section model for MscL’s

closed and open states with radii 2.3 nm and 3.5 nm, respectively, which yield cross-

section areas equivalent to the corresponding clover-leaf shape models we’ve already

discussed (see dashed curves in Fig. 4.5). Using circular cross-sections, we found com-

parable shifts in ∆Gℓ with increasing temperature over the range T = 10–50◦C. This

signifies that our results do not depend substantially on the variations in MscL’s cross-

section shape. Furthermore, these findings remain consistent even when the parameters

m and ε in Eq. (4.1) and Eq. (4.2) are subject to variations, e.g., of 50%, as depicted by

the lightly shaded regions in Fig. 4.5(b,d) for m and the darker shaded regions for ε.

We estimated the activation energy in Eq. (4.5) for MscL in an EcoC membrane, con-

sidering τ = 0.01, 0.1, 1 kBTrm/nm
2, as a function of temperature. Though, ∆Gp in Eq. (4.5)

is not precisely known, MscL has been measured to have a channel opening probability

Po = 0.5 at around τ ≈ 2.7 kBTrm/nm
2 [22]. So we assign ∆Gp a value that yields Po = 0.5

in Eq. (4.4 at τ ≈ 2.7 kBTrm/nm
2. For our calculations with Woff = Won = 3.8 nm, this re-

quires we set ∆Gp = 55 kBTrm [see Fig. 4.5(a)], and for our calculations with Woff = 3.8 nm

and Won = 2.5 nm, this requires we set ∆Gp = 0 [see Fig. 4.5(c)].

In our models for MscL, ∆Gp is independent of temperature. So the changes in ∆G

due to increasing temperature in Fig. 4.5(a,c) originate from ∆Gℓ. For our calculations

with Woff = Won = 3.8 nm, we find that the contributions due to finite τ further increase

∆Gℓ with increasing temperature. For example, at τ = 1 kBTrm/nm
2 ∆Gℓ increases by

19 kBTrm with increasing temperature over the range T = 10–50◦C [see blue curve in

Fig. 4.5(a)], which is substantial compared to an increase of 4 kBTrm in ∆Gℓ|τ = 0 [see
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solid red curve in Fig. 4.4(b)]. So changes in temperature can have a significant effect on

∆G due to membrane tension.

In contrast, when we consider the hydrophobic thicknesses Woff = 3.8 nm and Won =

2.5 nm for MscL’s closed and open state, respectively, we find that incorporating a finite

τ does not significantly impact the change in ∆G with increasing temperature [compare

curves in Fig. 4.5(c) with the solid red curve in Fig. 4.4(d)]. Thus, the decrease in ∆G with

increasing temperature in Fig. 4.5(c) is primarily attributed to the decrease in the bilayer’s

hydrophobic thickness, as we discussed previously when we considered τ = 0.

Using Eq. (4.4), we calculated MscL’s channel opening probability Po as a function of

τ at temperatures T = 10, 30, 50◦C. We find that MscL’s activation threshold membrane

tension¶ increases by about 0.2 kBTrm/nm
2 (equivalent to about a 10% increase) with

increasing temperature over the range T = 10–50◦C, when we set Woff = Won = 3.8 nm

[see Fig. 4.6(c)]. In contrast, when we consider Woff = 3.8 nm and Won = 2.5 nm, the

activation threshold membrane tension decreases by about 2 kBTrm/nm2 (equivalent to

about a 60% decrease) with increasing temperature over the range T = 10–50◦C [see

Fig. 4.6(d)]. These findings remain consistent even when the parameters m and ε in

Eq. (4.1) and Eq. (4.2), respectively, are varied by 50%, as indicated by the lightly shaded

regions in Fig. 4.6(b,d) for m and the darker shaded regions for ε.
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Figure 4.6: In panels (a,b), we depict estimates of MscL’s activation energy in Eq. (4.5) in
an EcoC membrane as a function of temperature, where we set the membrane tension ⌧
to the values indicated by the color legend beneath panel (c). In panels (b,d) we show the
opening channel probability in Eq. (4.4) for MscL in an EcoC membrane as a function of
⌧ , where we set the temperature T to the values indicated in the color legend underneath
panel (d), and the shaded regions. The shaded regions in panels (b,d) denote the range
of solutions for 50% variations in m in Eq. (4.1) and " in Eq. (4.2) as indicated in the
greyscale legend underneath panel (d). In panels (a,b) we set Wo↵ = Won = 3.8 nm, and
in panels (c,d) we set Wo↵ = 3.8 nm and Won = 2.5 nm in Eq. (2.13). In panels (a,b) we
set �Gp = 55 kBTrm, and in panels (c,d) we set �Gp = 0 in Eq. (4.5).

4.3.3 Piezo gating

We calculated the separate contributions to the activation energy of Piezo, �G =

�GM
` +�G⌧

`,cap+�Gb
`,cap+�Gb

p,cap for the Piezo dome shape models discussed in Sec. 4.2.3.
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Figure 4.6: In panels (a,b), we depict estimates of MscL’s activation energy in Eq. (4.5) in
an EcoC membrane as a function of temperature, where we set the membrane tension τ
to the values indicated by the color legend beneath panel (c). In panels (b,d) we show the
opening channel probability in Eq. (4.4) for MscL in an EcoC membrane as a function of
τ , where we set the temperature T to the values indicated in the color legend underneath
panel (d), and the shaded regions. The shaded regions in panels (b,d) denote the range
of solutions for 50% variations in m in Eq. (4.1) and ε in Eq. (4.2) as indicated in the
greyscale legend underneath panel (d). In panels (a,b) we set Woff = Won = 3.8 nm, and
in panels (c,d) we set Woff = 3.8 nm and Won = 2.5 nm in Eq. (2.13). In panels (a,b) we
set ∆Gp = 55 kBTrm, and in panels (c,d) we set ∆Gp = 0 in Eq. (4.5).

4.3.3 Piezo gating

We calculated the separate contributions to the activation energy of Piezo, ∆G =

∆GM
ℓ +∆Gτ

ℓ,cap+∆Gb
ℓ,cap+∆Gb

p,cap for the Piezo dome shape models discussed in Sec. 4.2.3.

If we assume Kp
b (T ) = 20 kBTrm and membrane tension τ is finite, we find that ∆GM

ℓ de-

creases approximately linearly with increasing temperature over the range T = 10–50◦C
¶Throughout this thesis, we define the activation threshold of ion channels as the value for τ at which

Po = 0.5 in Eq. (4.4).
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Figure 4.7: Estimates of (a) the change in deformation energy associated with the lipid
bilayer surrounding the Piezo dome, �GM

` , (b) the change in the energy associated with
the change in the Piezo dome’s in-plane bilayer area under membrane tension, �G⌧

`,cap,
(c) the change in the bending energies associated with the lipid bilayer component of
the Piezo dome, �Gb

`,cap (green curves), and the protein component of the Piezo dome,
�Gb

p,cap (purple curves), and (d) the activation energy of Piezo at the membrane tension
values indicated by the color legends and as functions of temperature. For our estimates
of �GM

` (T ), in panel (a), we used Eq. (B.1) in the arc-length representation (see Sec. B.1
for details) with the boundary conditions in Eqs. (4.6)–(4.8), which we evaluated with
Scap = 450 nm2 and Ro↵(T ) in Eq. (4.9). For our estimates of �G⌧

`,cap(T ), in panel (b), we
used Eq. (4.10) which we evaluated with Scap = 450 nm2 and Ro↵(T ) in Eq. (4.9). For our
estimates of �Gb

`,cap(T ), in panel (c), we used Eq. (4.11), which we evaluated with K`
b(T )

in Eq. (4.2), Scap = 450 nm2, and Ro↵(T ) in Eq. (4.9). For our estimates of �Gb
p,cap(T ),

in panel (c), we used Eq. (4.12), which we evaluated with the Kp
b (T ) that is indicated by

the legend underneath all of the panels, Rp
0 = 10.2 nm, Scap = 450 nm2, and Ro↵(T ) in

Eq. (4.9). To evaluate Ro↵(T ) in Eq. (4.9), we used Rp
0 = 10.2 nm, K`

b(T ) in Eq. (4.2), and
the Kp

b (T ) that is indicated by the legend underneath all of the panels. For our estimates
of �G(T ), in panel (d), we used �G(T ) = �GM

` (T )+�G⌧
`,cap(T )+�Gb

`,cap(T )+�Gb
p,cap(T ).
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Figure 4.7: Estimates of (a) the change in deformation energy associated with the lipid
bilayer surrounding the Piezo dome, ∆GM

ℓ , (b) the change in the energy associated with
the change in the Piezo dome’s in-plane bilayer area under membrane tension, ∆Gτ

ℓ,cap,
(c) the change in the bending energies associated with the lipid bilayer component of
the Piezo dome, ∆Gb

ℓ,cap (green curves), and the protein component of the Piezo dome,
∆Gb

p,cap (purple curves), and (d) the activation energy of Piezo at the membrane tension
values indicated by the color legends and as functions of temperature. For our estimates
of ∆GM

ℓ (T ), in panel (a), we used Eq. (B.1) in the arc-length representation (see Sec. B.1
for details) with the boundary conditions in Eqs. (4.6)–(4.8), which we evaluated with
Scap = 450 nm2 and Roff(T ) in Eq. (4.9). For our estimates of ∆Gτ

ℓ,cap(T ), in panel (b), we
used Eq. (4.10) which we evaluated with Scap = 450 nm2 and Roff(T ) in Eq. (4.9). For our
estimates of ∆Gb

ℓ,cap(T ), in panel (c), we used Eq. (4.11), which we evaluated with Kℓ
b(T )

in Eq. (4.2), Scap = 450 nm2, and Roff(T ) in Eq. (4.9). For our estimates of ∆Gb
p,cap(T ),

in panel (c), we used Eq. (4.12), which we evaluated with the Kp
b (T ) that is indicated by

the legend underneath all of the panels, Rp
0 = 10.2 nm, Scap = 450 nm2, and Roff(T ) in

Eq. (4.9). To evaluate Roff(T ) in Eq. (4.9), we used Rp
0 = 10.2 nm, Kℓ

b(T ) in Eq. (4.2), and
the Kp

b (T ) that is indicated by the legend underneath all of the panels. For our estimates
of ∆G(T ), in panel (d), we used ∆G(T ) = ∆GM

ℓ (T )+∆Gτ
ℓ,cap(T )+∆Gb

ℓ,cap(T )+∆Gb
p,cap(T ).

[see dotted curves in Fig. 4.7(a)]. In particular, at τ = 1 kBTrm/nm
2, ∆GM

ℓ decreases by

about 3 kBTrm over the range T = 10–50◦C [see blue dotted curve in Fig. 4.7(a)]. Since
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we assume in our model that Piezo’s dome flattens out in its open state, the lipid bilayer

also flattens out, so GM
ℓ,on = 0. This implies that the decrease in ∆GM

ℓ is due to an in-

crease in GM
ℓ,off . GM

ℓ,off increases since the Piezo dome curvature (1/Roff) increases with

increasing temperature. Since Roff in Eq. (4.9) depends linearly on the ratio Kℓ
b/K

p
b and

Kℓ
b decreases with increasing temperature while we assume Kp

b remains constant, the

Piezo dome curvature increases with increasing temperature. This implies that the more

highly curved Piezo dome yields a larger GM
ℓ,off in our model. Thus, our model predicts that

∆GM
ℓ decreases due to Piezo’s dome curvature increasing with increasing temperature.

We calculated the contribution ∆Gτ
ℓ,cap in Eq. (4.10), at finite τ , as a function of tem-

perature [see dotted curves in Fig. 4.7(b)]. We find that ∆Gτ
ℓ,cap decreases approximately

linearly with increasing temperature. In particular, at τ = 1 kBTrm/nm
2 we find that ∆Gτ

ℓ,cap

decreases by about 3 kBTrm over the range T = 10–50◦C [see blue dotted curve in

Fig. 4.7(b)]. Since Piezo’s dome curvature increases with increasing temperature and

∆Acap ∼ 1/R2
off in Eq. (4.10), ∆Acap increases with increasing temperature. Thus, our

model predicts that ∆Gτ
ℓ,cap decreases with increasing temperature due to the decrease

in bilayer in-plane area that accompanies the increase in Piezo dome curvature in its off

state.

We calculated the contribution ∆Gb
ℓ,cap in Eq. (4.11) as a function of temperature [see

green dotted curve in Fig. 4.7(c)]. We find that ∆Gb
ℓ,cap decreases approximately linearly

with increasing temperature by about 1 kBTrm over the range T = 10–50◦C. Since we

assume in our model that Piezo’s dome flattens out in its open state, the lipid bilayer

also flattens out, so Gb
ℓ,cap,on = 0. This implies that the decrease in ∆Gb

ℓ,cap is due to

an increase in Gb
ℓ,cap,off . Gb

ℓ,cap,off ∼ 1/R2
off [see Eq. (4.11)], so Gb

ℓ,cap,off increases with
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increasing Piezo dome curvature. Thus, our model predicts that ∆Gb
ℓ,cap decreases with

increasing temperature due to the increase in Piezo’s dome curvature.

We calculated the contribution ∆Gb
p,cap in Eq. (4.12) as a function of temperature [see

purple dotted curve in Fig. 4.7(c)]. We find that ∆Gb
p,cap increases approximately linearly

with increasing temperature by about 3 kBTrm over the range T = 10–50◦C. Since we

assume in our model that Piezo’s dome flattens out in its open state, the lipid bilayer

also flattens out, so Gb
p,cap,on = 0.25Kp

bScap(2/R
p
0)

2/2 is independent of temperature [see

Eq. (4.12)]. This implies that the increase in ∆Gb
p,cap is due to a decrease in Gb

p,off . Gb
p,off ∼

[(1/Rp
0) − (1/Roff)]

2, with 1/Rp
0 > 1/Roff [see Eq. (4.12)]. This implies that as the Piezo

dome curvature increases, it increases towards the intrinsic curvature of Piezo (1/Rp
0) and,

consequently, Gb
p,off decreases. Thus, our model predicts that the increase in ∆Gb

p,cap with

increasing temperature is due to the Piezo dome curvature increasing towards Piezo’s

intrinsic curvature.

These results suggest that if we assumeKp
b (T ) = 20 kBTrm the lipid bilayer contribution

biases Piezo towards its open state [∆T (∆Gℓ) = ∆T (∆G
M
ℓ + ∆Gτ

ℓ,cap + ∆Gb
ℓ,cap) < 0]||

with increasing temperature, while the contribution due to the bending of Piezo’s arms

biases Piezo towards its off state [∆T (∆Gp) = ∆T (∆
b
p,cap) > 0]. At low tension (τ ⪅

0.1 kBTrm/nm
2), |∆T (∆Gℓ)| < |∆T (∆Gp)|, so increasing temperature biases Piezo towards

its off state, ∆T (∆G) > 0 [see cyan and red dotted curves in Fig. 4.7(d)]. At a sufficiently

large membrane tension (τ ⪆ 0.2 kBTrm/nm
2), |∆T (∆Gℓ)| > |∆T (∆Gp)|, so increasing

||The quantity ∆T q represents the difference between q at T = 50◦C and q at T = 10◦C for the function
q.
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temperature biases Piezo towards its on state, ∆T (∆G) < 0 [see blue dotted curve in

Fig. 4.7(d)].

Piezo’s activation threshold was previously measured [111] to be about

τ ≈ 0.4 kBTrm/nm
2. We find that as temperature increases, this threshold decreases

by about 0.05 kBTrm/nm2 (roughly equivalent to about a 10% decrease) over the range

T = 10–50◦C [see Fig. 4.8(a)]. So our model suggests changes in temperature have a

slight effect on Piezo’s gating threshold if Kp
b does not depend on temperature. In our

model, this effect is primarily attributed to the increase in Piezo dome curvature (1/Roff)

[see Eq. (4.9)] with increasing temperature.

If we consider, instead, that Kp
b (T ) = Kℓ

b(T ), the Piezo dome curvature is independent

of temperature, with 1/Roff = 0.25/Rp
0 [see Eq. (4.9)]. Assuming Kp

b (T ) = Kℓ
b(T ), we

calculated ∆GM
ℓ as function of temperature [see solid curves in Fig. 4.7(a)]. We find

that ∆GM
ℓ increases approximately linearly with increasing temperature. In particulate, at

τ = 1 kBTrm/nm
2, we find ∆GM

ℓ increases by about 1 kBTrm over the temperature range

T = 10–50◦C [see blue solid curve in Fig. 4.7(a)]. Since our model assumes the Piezo

dome is flat in its open state, we have GM
ℓ,on = 0. This implies the increase in ∆GM

ℓ is

due to a decrease in GM
ℓ,off . GM

ℓ,off ∼ Kℓ
b [see Eq. (B.1)], so GM

ℓ,off decreases with increasing

temperature since Kℓ
b decreases with increasing temperature [see Eq. (4.2)]. In essence,

the lipid bilayer becomes easier to bend. Thus, our model predicts that the increase in

∆GM
ℓ with increasing temperature is due to the bilayer becoming easier to bend.

We calculated ∆Gτ
ℓ,cap as function of temperature [see solid curves in Fig. 4.7(b)].

We find that ∆Gτ
ℓ,cap is independent of temperature. This result is attributed to the Piezo

dome curvature not changing with temperature. Since the Piezo dome curvature does not
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FIG. 5. Estimate of Piezo channel opening probability Po curves calculated using Eq. (14) at the indicated values of T as a
function of membrane tension ⌧ for the Piezo-membrane system in Fig. 4, with (a) Kp = Kb|T=Trm , (b) Kp = Kb(Flipped(T )),
and (c) Kp = Kb(T ), where Kb(T ) is taken from Eq. (4).

4 kBTrm (approximately 47%) under elevated mem-
brane temperature conditions over the temperature range
T = 10–50�C (as indicated by the blue dotted curve in
Fig. 4(d)).

When analyzing Piezo’s channel opening probability
Po as a function of membrane tension ⌧ (Eq. (14)), we ob-
serve that the transition of increasing temperature bias-
ing Piezo towards its closed state to biasing Piezo towards
its opened state occurs at a membrane tension smaller
than Piezo’s gating tension. Furthermore, the shifts in
the isotherms are negligible at low membrane tension
(⌧ . 0.1 kBTrm/nm2) (Fig. 5(a)). However, as mem-
brane tension increases, the spacing between isotherms
widens due to the escalating work required against mem-
brane tension to form the Piezo dome in its closed (o↵)
state. This bias pushes Piezo towards its opened (on)
state at higher temperatures. These observations align
with the previous findings that variations in �G are

more pronounced at greater membrane tension (as seen
in the dotted curves in Fig. 4(d)). To illustrate the ro-
bustness of our findings, we included shaded regions in
Fig. 5 to represent the gating curve variations at each
indicated temperature, resulting from a 50% variation in
" = 7 ⇥ 10�21 J in Eq. 4.

Conversely, if the ratio of rigidities K`
b/Kp

b increases
with temperature, warmer temperatures would tend to
strain Piezo towards a larger radius of curvature (Ro↵)
away from its intrinsic radius of curvature (Rp

0). Assum-
ing that the rigidity of Piezo’s arms decreases with tem-
perature at twice the rate of the lipid bilayer (Kp

b (T ) =

K`
b(2" ! ", T )), the increase in K`

b/Kp
b with warmer

temperature results in variations in the opposite direc-
tion compared to the scenario with Kp

b (T ) = 20 kBTrm

(dashed curves in Fig. 4); notably, these variations are
more significant with temperature changes. In con-
trast, the shifts between Piezo’s isotherm gating curves

Figure 4.8: Estimates of channel opening probability in Eq. (4.4) for Piezo as a function of
membrane tension and at the indicated values of temperature T , assuming (a) Kp

b (T ) =
20 kBTrm, (b) Kp

b (T ) = Kℓ
b(T ), and (c) Kp

b (T ) = Kℓ
b(2ε → ε, T ), with Kb(T ) calculated by

Eq. (4.2). To evaluate ∆G = ∆GM
ℓ +∆Gτ

ℓ,cap +∆Gb
ℓ,cap +∆Gb

p,cap in Eq. (4.4) we followed
the caption of Fig. 4.7 to calculate all of its various contributions. The shaded regions
denote the range of solutions that include 50% variations in ε about ε = 7× 10−21 J at the
temperatures indicated by the color legend in each panel.
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change with temperature ∆Ap in Eq. (4.10) does not change with temperature. Thus our

model predicts that ∆Gτ
ℓ,cap is independent of temperature since the Piezo dome curvature

does not change with temperature when Kp
b (T ) = Kℓ

b(T ).

We calculated ∆Gb
ℓ,cap as a function of temperature [see solid green curve in Fig. 4.7(c)].

We find that ∆Gb
ℓ,cap increases approximately linearly with increasing temperature by

about 2 kBTrm over the range T = 10–50◦C. Since our model assumes the Piezo dome

flattens out when it gates open, we have Gb
ℓ,cap,on = 0. This implies the increase in ∆Gb

ℓ,cap

is due to a decrease in Gb
ℓ,cap,off . Gb

ℓ,cap,off ∼ Kℓ
b [see Eq. (4.11)], so Gb

ℓ,cap,off decreases with

increasing temperature since Kℓ
b decreases with increasing temperature [see Eq. (4.2)].

This amounts to the lipid bilayer becoming easier to bend with increasing temperature.

Thus, our model predicts that the increase in ∆Gb
ℓ,cap with increasing temperature is due

to the bilayer becoming easier to bend.

We calculated the contribution ∆Gb
p,cap in Eq. (4.12) as a function of temperature

[see purple solid curve in Fig. 4.7(c)]. We find that ∆Gb
p,cap decreases approximately

linearly with increasing temperature by about 4 kBTrm over the range T = 10–50◦C. Since

Piezo’s dome curvature is independent of temperature, the dependence on temperature

of ∆Gb
p,cap in encapsulated entirely in Kp

b (T ) (∆Gb
p,cap ∼ Kp

b )[see Eq. (4.12)]. Since it is

always the case that 1/Rp
0 > 1/Rp

0 − 1/Roff for finite Roff , in our model it is always true that

∆Gb
p,cap > 0. Thus, our model predicts that ∆Gb

p,cap decreases with increasing temperature

due to Piezo’s arms becoming easier to bend.

If we assume Kp
b (T ) = Kℓ

b(T ), our model results suggest that over the membrane

tension range τ = 0–1 kBTrm, ∆G decreases with increasing temperature [see Fig. 4.7(d)].

Collecting our results for the effect of increasing temperature on the many contributions to
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∆G, we find that the lipid bilayer contribution (∆Gℓ = ∆M
ℓ +∆Gb

ℓ,cap) biases Piezo towards

its off state with increasing temperature while the protein contribution ∆Gp = ∆Gb
p,cap

biases Piezo towards its on state. Over the membrane tension range τ = 0–1 kBTrm, we

have |∆T (∆Gℓ)| < |∆T (∆Gp)|, thus ∆G decreases with increasing temperature.

We calculated the channel opening probability in Eq. (4.4) of Piezo [see Fig. 4.8(b)].

We find that the activation threshold decreases by about 0.07 kBTrm/nm2 (roughly equiv-

alent to about a 20% decrease) with increasing temperature over the range T = 10–50◦C.

Thus, if Kp
b (T ) = Kℓ

b(T ), our model predicts changes in temperature can produce shifts in

Piezo’s activation threshold membrane tension that are on the same order of magnitude

as the activation threshold.

We also explore the possibility that Kp
b decreases with increasing temperature at faster

rate than Kℓ
b . In particular, we assume Kp

b = Kℓ
b(2ε → ε, T ) (see Sec. 4.2.3). We cal-

culated ∆GM
ℓ as function of temperature [see dashed curves in Fig. 4.7(a)]. We find

that ∆GM
ℓ increases approximately linearly with increasing temperature. In particulate, at

τ = 1 kBTrm/nm
2, we find ∆GM

ℓ increases by about 5 kBTrm over the temperature range

T = 10–50◦C [see blue dashed curve in Fig. 4.7(a)]. Since our model assumes the Piezo

dome is flat in its open state, we have GM
ℓ,on = 0. This implies the increase in ∆GM

ℓ is due

to a decrease inGM
ℓ,off . GM

ℓ,off decreases since the Piezo dome curvature (1/Roff) decreases

with increasing temperature. Since Roff in Eq. (4.9) depends linearly on the ratio Kℓ
b/K

p
b

andKp
b decreases at a faster rate with increasing temperature thanKℓ

b , Roff increases with

increasing temperature. Thus, the Piezo dome curvature decreases with increasing tem-

perature. This implies that a less curved Piezo dome yields a smaller GM
ℓ,off in our model.
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Thus, our model predicts that ∆GM
ℓ increases due to Piezo’s dome curvature decreasing

with increasing temperature.

We calculated the contribution ∆Gτ
ℓ,cap in Eq. (4.10), at finite τ , as a function of tem-

perature [see dashed curves in Fig. 4.7(b)]. We find that ∆Gτ
ℓ,cap increases approximately

linearly with increasing temperature. In particular, at τ = 1 kBTrm/nm
2 we find that ∆Gτ

ℓ,cap

increases by about 3 kBTrm over the range T = 10–50◦C [see blue dashed curve in

Fig. 4.7(b)]. Since Piezo’s dome curvature decreases with increasing temperature and

∆Acap ∼ 1/R2
off in Eq. (4.10), ∆Acap decreases with increasing temperature. Thus, our

model predicts that ∆Gτ
ℓ,cap increases with increasing temperature due to the increase in

bilayer in-plane area that accompanies the decrease in Piezo dome curvature in its off

state.

We calculated the contribution ∆Gb
ℓ,cap in Eq. (4.11) as a function of temperature [see

green dashed curve in Fig. 4.7(c)]. We find that ∆Gb
ℓ,cap increases approximately linearly

with increasing temperature by about 4 kBTrm over the range T = 10–50◦C. Since we

assume in our model that Piezo’s dome flattens out when it gates open, the lipid bilayer

also flattens out, so Gb
ℓ,cap,on = 0. This implies that the increase in ∆Gb

ℓ,cap is due to

an decrease in Gb
ℓ,cap,off . Gb

ℓ,cap,off ∼ 1/R2
off [see Eq. (4.11)], so Gb

ℓ,cap,off decreases with

decreasing Piezo dome curvature. Thus, our model predicts that ∆Gb
ℓ,cap increases with

increasing temperature due to the decrease in Piezo’s dome curvature.

We calculated the contribution ∆Gb
p,cap in Eq. (4.12) as a function of temperature [see

purple dashed curve in Fig. 4.7(c)]. We find that ∆Gb
p,cap decreases approximately linearly

with increasing temperature by about 11 kBTrm over the range T = 10–50◦C. Since we

assume in our model that Piezo’s dome flattens out when it gates open, the lipid bilayer
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also flattens out, so Gb
p,cap,on = 0.25Kp

bScap(2/R
p
0)

2/2 is independent of temperature [see

Eq. (4.12)]. This implies that the decrease in ∆Gb
p,cap is due to an increase inGb

p,off . Gb
p,off ∼

[(1/Rp
0) − (1/Roff)]

2, with 1/Rp
0 > 1/Roff [see Eq. (4.12)]. From this, it follows that as the

Piezo dome curvature decreases, it decreases away from the intrinsic curvature of Piezo

(1/Rp
0) and, consequently, Gb

p,off increases. Thus, our model predicts that the decrease in

∆Gb
p,cap with increasing temperature is due to the Piezo dome curvature decreasing away

from Piezo’s intrinsic curvature.

These results suggest that if we assume Kp
b = Kℓ

b(2ε→ ε, T ), the lipid bilayer contribu-

tion biases Piezo towards its closed state [∆T (∆Gℓ) = ∆T (∆G
M
ℓ +∆Gτ

ℓ,cap +∆Gb
ℓ,cap) > 0]

with increasing temperature, while the contribution due to the bending of Piezo’s arms

biases Piezo towards its on state [∆T (∆Gp) = ∆T (∆
b
p,cap) > 0].

At low tension (τ ≲ 0.1 kBTrm/nm
2), |∆T (∆Gℓ)| < |∆T (∆Gp)|, so increasing tem-

perature biases Piezo towards its on state, ∆T (∆G) < 0 [see cyan and red dashed

curves in Fig. 4.7(d)]. At a sufficiently large membrane tension (τ ⪆ 1 kBTrm/nm
2),

|∆T (∆Gℓ)| > |∆T (∆Gp)|, so increasing temperature biases Piezo towards its off state,

∆T (∆G) > 0 [see blue dashed curve in Fig. 4.7(d)].

Piezo’s activation threshold was previously measured [111] to be about

τ ≈ 0.4 kBTrm/nm
2, at τ ∼ 0.4 kBTrm/nm

2, our model give that increasing temperature

biases Piezo towards it on state. We find that as temperature increases, Piezo’s acti-

vation threshold decreases by about 0.13 kBTrm/nm2 (roughly equivalent to about a 30%

decrease) over the range T = 10–50◦C [see Fig. 4.8(a)]. So our model suggests that

changes in temperature can have a substantial effect on Piezo’s activation threshold if
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Kp
b = Kℓ

b(2ε → ε, T ). In our model, this effect is primarily attributed to the decrease in

Piezo dome curvature (1/Roff) [see Eq. (4.9)] with increasing temperature.

The shaded regions in Fig. 4.8 denote the range of solutions for Po, at the indicated

temperatures, over which ε Eq. (4.2) was varied by 50% about the value 7× 10−21 J. The

shaded regions demonstrate that our results for the shifts in Piezo’s activation curves with

increasing temperature, in all the models we considered, are robust to variations in ε by

as much as, e.g., 50%.

4.4 Connection to experiments

4.4.1 Chemoreceptors

Microorganisms have also long been recognized for their impressive capability to de-

tect temperature variations and orient their movement in response to temperature gra-

dients [13, 62–69, 219–223]. This ability to measure temperature gradients is vital for

microorganisms to navigate towards optimal growth enviroments. While the molecular

mechanisms underlying chemotaxis have been fairly well characterized and understood,

the molecular mechanisms underpinning the thermosensing behavior remained elusive

until experiments in recent decades began to shed light on the subject [13, 63–65, 68,

69, 222, 224]. Surprisingly, these investigations revealed that bacteria, including E. coli,

repurpose some of the very same chemoreceptors they use for chemotaxis to carry out

thermotaxis. Still, the physical mechanisms by which the chemoreceptors are activated

by temperature have remained a mystery.
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In this context, our model provides quantitative insights into the thermosensing capa-

bilities of E. coli chemoreceptors within the framework of temperature-induced changes

in lipid bilayer mechanics. Our findings indicate that alterations in bilayer properties,

driven by temperature fluctuations, can exert a significant influence on the energetics of

chemoreceptor activation. Over a biologically relevant temperature range of 10–50◦C, our

predictions suggest that moderate changes in temperature can induce variations of sev-

eral kBTrm in the energetic contribution from protein-induced deformations in the E. coli

cytoplasmic membrane to the chemoreceptor activation energy largely due to changes

in membrane thickness. Importantly, this magnitude of variation is comparable to the

changes in activation energy typically associated with chemoreceptor methylation, which

are about 1 kBTrm per methylation site [209]. These findings suggest that regions char-

acterized by locally elevated temperatures could act as areas with shorter bacterial run

times or function as “sinks" for bacterial diffusion. This phenomenon might lead to a

bias in bacterial motion toward higher temperatures. In essence, our model suggests

that bacteria might be drawn to warmer regions due to the reduced activation energy

for chemoreceptor-mediated responses that comes from a decrease in the contribution

from the lipid bilayer deformations with increasing temperature. This aligns intriguingly

with microfluid device experiments [13], which have indicated that bacteria tend to exhibit

thermophilic behavior in response to moderate temperature gradients through the use of

chemoreceptors.
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4.4.2 MscL

Regarding MscL’s temperature-dependent gating threshold in prokaryotic membranes,

there is a paucity of available data. However, it is worth noting that over a decade ago,

experimental evidence indicated that MscL’s activation threshold decreases as tempera-

ture decreases when reconstituted in mammalian cells [225]. This suggests, at least in

this particular investigation, that lower temperatures tend to bias MscL towards its open

state. We found here that bilayer deformations bias MscL towards its open state at lower

temperatures under two conditions: (1) MscL exhibits negligible change in hydrophobic

thickness upon activation and (2) MscL’s hydrophobic thickness exceeds that of the lipid

bilayer. Currently, to our knowledge, there is a lack of adequate data regarding the thick-

ness of mammalian cell membranes, preventing us from drawing any definite conclusions

about the hydrophobic thickness in the reported study in mammalian cells [225]. The

observed temperature dependence of MscL’s activation threshold is intriguing, given the

expectation that MscL exhibits a decrease in thickness when gated open [27, 42, 59,

91, 214], a point we wil return to later. Yet, we acknowledge that it is possible for tight

binding lipids or peptides to act as structural co-factors that can effectively reduce the

change in MscL’s hydrophobic thickness when activated [22]. Assuming mammalian cell

membranes are thinner than MscL, our findings suggest that MscL’s effective hydrophobic

thickness remains relatively constant during activation.

In contrast, if we assume that MscL’s effective hydrophobic thickness decreases to a

value thinner than the lipid bilayer when it gates open [27, 42, 59, 91, 214], our model pre-

dicts that MscL’s activation threshold decreases with increasing temperature. In particular,
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our model predicts MscL’s activation threshold tension decreases by a couple kBTrm/nm2

over the range T = 10–50◦C. While this result does not align with the experimental ob-

servations of MscL’s activation threshold increasing with increasing temperature in mam-

malian cells [225], it is not unsupported. Since membrane hydrophobic thickness has

been observed to decrease with increasing temperature [15, 116], predictions of MscL’s

activation threshold decreasing with increasing temperature align with the observations

of MscL’s activation threshold decreasing with decreasing membrane thickness [14, 22].

Moreover, there are also experiments that indicate that cell membrane rupture tension

decreases with increasing temperature, albeit with limited available data [117]. These ob-

servations could be of biological significance if MscL’s activation threshold was found to

consistently remain just below that of the cell membrane rupture tension over the range of

biologically relevant temperatures. This would be beneficial for bacteria given the poten-

tial for damage inflicted on the cell from the premature activation of MscL and, conversely,

if MscL’s activation was not accessible when needed.

Clearly, more data is needed to decipher MscL’s functional dependence on tempera-

ture, but available experimental data and our calculations suggest that temperature may

have a significant effect. Given the general principles on which our model is built, similar

conclusions are expected to apply more broadly to other protein sensors.
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4.4.3 Piezo

Recent electrophysiological experiments indicate that Piezo’s activation is inhibited by

cold temperatures and increased lipid bilayer rigidity [108, 226]. Since cold tempera-

tures are expected to increase lipid bilayer rigidity, this suggests that Piezo’s functional

dependence on temperature is intricately linked to changes in lipid bilayer rigidity. Our

model predicts that decreasing temperature (and increasing lipid bilayer rigidity) yields an

increase in Piezo’s activation threshold in qualitative agreement with experimental obser-

vations [108, 226]. This result follows regardless of whether we assumed the bending

rigidity of Piezo’s arms increases in colder temperatures or remains constant.

The shifts in Piezo’s activation threshold with increasing temperature over the range

T = 10–50◦C, predicted by our model in terms of membrane tension, are on the same or-

der of magnitude as Piezo’s gating tension at room temperature (∆τ ∼ −0.1 kBTrm/nm2).

Furthermore, our calculations indicate that these shifts are anticipated to be more sub-

stantial if the bending rigidity of Piezo’s arms exhibits a faster rate of decrease with in-

creasing temperature. These findings suggest that temperature can have a significant

impact on the functionality of Piezo ion channels. Moreover our results indicate that the

lipid bilayer rigidity may provide a general physical mechanism by which transmembrane

mechanosensors can sense changes in temperature.
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Chapter 5

Physical mechanism for the self-assembly of emerin

nanodomains at the inner nuclear membrane

This chapter proposes and develops a physical mechanism for the self-assembly and

stabilization of emerin nanodomains observed in experiments [12]. The chapter is orga-

nized as follows. In Sec. 5.1 we develop the general mathematical form of the reaction-

diffusion equations we employ to model emerin nanodomains, and present a linear sta-

bility analysis to obtain the general mathematical conditions on the reaction rate con-

stants and diffusion coefficients for which they yield a Turing instability. In Sec. 5.2 we

introduce our physical model, based on a Turing mechanism, for the self-assembly and

stabilization of emerin nanodomains. In Sec. 5.2.1 we demonstrate how the molecular

reactions relevant for emerin nanodomains can be expressed mathematically in terms of

our reaction-diffusion equations. In Sec. 5.3 we employ our reaction-diffusion model to

predict key properties of emerin nanodomains observed in experiments. We summarize

our conclusions in Sec. 6.4.
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5.1 Reaction-diffusion equations and linear stability anal-

ysis

Here we present the mathematical framework of our reaction-diffusion system, where

I (x, y, t) and A (x, y, t) represent dynamic molecular concentration fields along the INM

governed by the reaction-diffusion equations

∂I

∂t
= F (I, A) + νI

[
(1− A)∇2I + I∇2A

]
(5.1)

and

∂A

∂t
= G(I, A) + νA

[
(1− I)∇2A+ A∇2I

]
, (5.2)

which involve the cubic polynomials F and G describing the reaction dynamics of the

I and A molecule populations (see Sec. 5.2.1). The diffusion coefficients, νI and νA,

dictate the dispersion rates of these molecular complexes. Notably, we impose here the

constraint 0 ≤ I + A ≤ 1, which accounts for the finite sizes [227] of I and A complexes

in the confined INM area, on all reaction and diffusion processes; we thereby scale I and

A to represent the local fractional coverage of INM area. This constraint produces the

non-linear modifications to the standard diffusion terms νI∇2I and νA∇2A in Eqs. (5.1)

and (5.2).

A Turing instability, also known as a diffusion-driven instability, was theorized by Alan

Turing [140, 141], as a generic mechanism for nonequilibrium pattern formation from ran-

dom initial conditions. For our model to support a Turing instability [9, 11, 120–122, 140–
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144], Eqs. (5.1) and (5.2) must exhibit a non-trivial homogeneous fixed point, represented

as (I, A) =
(
Ī , Ā

)
. For a non-trivial homogeneous fixed point, both Ī and Ā should not

equal 0 or 1. We have

F
(
Ī , Ā

)
= 0, G

(
Ī , Ā

)
= 0 , (5.3)

In the absence of diffusion, random perturbations of this fixed point decay over time.

Our perturbation can be represented as a planar wave with small amplitude,

δ⃗f(x, y, t) =



δI

δA


 =



δ̂I

δ̂A


 eλtei·κ⃗·r⃗ , (5.4)

where λ characterizes whether the perturbation grows or decays, κ⃗ = (κx, κy)
T is the

perturbation’s spatial wavevector, and r⃗ = (x, y)T. Introducing random perturbations of

the I and A concentration fields about I = Ī and A = Ā, δ⃗f and setting νI = νA = 0, we

have from Eqs. (5.1)–(5.3) that

∂δ⃗f (x, y, t)

∂t
= J̄δ⃗f (x, y, t) , (5.5)

with the homogeneous stability matrix

J̄ =



I11 I12

A21 A22


 ≡




∂F
∂I

∣∣
(I,A)=(Ī,Ā)

∂F
∂A

∣∣
(I,A)=(Ī,Ā)

∂G
∂I

∣∣
(I,A)=(Ī,Ā)

∂G
∂A

∣∣
(I,A)=(Ī,Ā)


 , (5.6)
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to leading order in δ⃗f . Substitution of this representation of the perturbation δ⃗f into

Eq. (5.5) leads to the eigenvector equation

J̄ · δ⃗f (t) = λδ⃗f (t) , (5.7)

For the perturbation δ⃗f to decay with time, Eq. (5.7) must yield two negative eigenvalues

(λ±0 < 0). One finds that the condition

Tr[J̄] = I11 + A22 < 0 (5.8)

guarantees one negative eigenvalue, while the condition

Det[J̄] = I11A22 − I12A21 > 0 (5.9)

ensures that both eigenvalues share the same sign. Consequently, Eqs. (5.8) and (5.9)

ensure the stability of the reaction-only system under (spatially homogeneous) perturba-

tions.

The subsequent stage in our analysis involves introducing diffusion into our system

and investigating the joint conditions on the reaction-diffusion processes in the system

leading to a Turing instability. In the presence of diffusion with νI ̸= νA, random pertur-

bations of the fixed point (I, A) =
(
Ī , Ā

)
trigger pattern formation via a Turing instability.
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Introducing random perturbations of the I and A concentration fields about I = Ī and

A = Ā, δ⃗f , we have from Eqs. (5.1)–(5.3) that

∂δ⃗f (x, y, t)

∂t
=

(
J̄+ D̄ · ∇2

)
δ⃗f (x, y, t) , (5.10)

with the coefficients of the diffusive terms in matrix

D̄ =



νI

(
1− Ā

)
Ī

Ā νA
(
1− Ī

)


 , (5.11)

to leading order in δ⃗f . Substitution of this representation of the perturbation δ⃗f into

Eq. (5.10) leads to the eigenvector equation

(
J̄− κ2D̄

)
δ⃗f (t) = λδ⃗f (t) . (5.12)

For a Turing instability, the perturbation δ⃗f must not decay with time. The perturbation δ⃗f

decays with time if Tr
[
J̄− κ2D̄

]
< 0 and Det

[
J̄− κ2D̄

]
> 0, so, for their to be a Turing

instability, one or both of these conditions must not be satisfied.

The terms within D̄ in Eq. (5.11) are positive, since (I, A) =
(
Ī , Ā

)
is a non-trivial ho-

mogeneous fixed point and 0 ≤ I + A ≤ 1. Thus Tr
[
J̄− κ2D̄

]
= I11+

A22 − κ2
[
νI

(
1− Ā

)
+ νA

(
1− Ī

)]
< 0. This implies, for a Turing instability, we require

Det
[
J̄− κ2D̄

]
< 0.

Det
[
J̄− κ2D̄

]
= Aκ4 − Bκ2 + C < 0, with A = 4νIνA

(
1− Ī − Ā

)
,

B = νI
[
A22

(
1− Ā

)
− A21Ī

]
+ νA

[
I11

(
1− Ī

)
− I12Ā

]
, and C = Det

[
J̄
]
. So Det

[
J̄− κ2D̄

]
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is a quadratic function in κ2. Note that A > 0 since (I, A) =
(
Ī , Ā

)
is a non-trivial homo-

geneous fixed point and 0 ≤ I + A ≤ 1. Therefore, Det
[
J̄− κ2D̄

]
is a convex parabolic

function in κ2, with its vertex at κ2 = B/2A. To have Det
[
J̄− κ2D̄

]
< 0, the vertex of

Det
[
J̄− κ2D̄

]
must lie below the κ2-axis. Since C = Det[J̄] > 0 [see Eq. (5.9)], this can

only be true if B2 − 4AC > 0, and thus we have the condition

{
νI

[
A22

(
1− Ā

)
− A21Ī

]
+ νA

[
I11

(
1− Ī

)
− I12Ā

]}2 − 4νIνA
(
1− Ī − Ā

)
Det

[
J̄
]
> 0 .

(5.13)

The perturbation δ⃗f has a finite spatial frequency κ, so for a Turing instability, κ must

be real where Det
[
J̄− κ2D̄

]
< 0. This is the case if the intercepts κ2± > 0. κ2± > 0 if

B > 0, and consequently we have the condition

νI
[
A22

(
1− Ā

)
− A21Ī

]
+ νA

[
I11

(
1− Ī

)
− I12Ā

]
> 0 . (5.14)

The range
(
κ2−, κ

2
+

)
signifies a band of unstable perturbation modes that give rise to a

Turing instability. An estimate of the characteristic scale arising from the Turing instability

can be calculated from the midpoint of this band, denoted as κ2m, which corresponds

to the vertex of Det
[
J̄− κ2D̄

]
, κm =

√
B/2A [121]. The characteristic length scale is

determined by

ℓc =
2π

κm
= 2π

√
2νIνA(1− Ī − Ā)

νI [A22(1− Ā)− A21Ī] + νA[I11(1− Ī)− I12Ā]
. (5.15)
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5.2 Physical model of emerin nanodomains

Here we develop a physical model of the self-assembly of emerin nanodomains at the

INM. Our model serves three related purposes: (a) to explain how wild-type emerin nan-

odomains form when no force is applied, (b) to predict how wild-type emerin nanodomain

properties change under force application based on experimental data on changes in

emerin diffusion under force application, and (c) to trace observed changes in emerin or-

ganization in mutated forms of emerin to changes in key reaction or diffusion processes.

Experiments have revealed two distinct populations of fast and slowly diffusing emerin

at the INM [12]. On this basis, we consider in our model two distinct types of emerin-NBP

complexes, fast and slowly diffusing emerin-NBP complexes. We assume that there are

fast diffusing emerin that on their own cannot assemble molecular complexes, but can do

so by interacting with other emerin or NBPs. We refer to these emerin and NBP molecular

components, collectively, as ∅. On the one hand, emerin can interact with other emerin

or NBPs to form molecular complexes that can transiently assemble into higher-order

structures, resulting in a local increase in the molecule concentration at the INM. Such

molecular complexes therefore activate increased molecule concentrations at the INM,

and we denote them by A. We assume that the diffusion of A complexes is slowed down

substantially by their interactions with other emerin and with molecular binding partners,

and therefore associate A complexes with the slowly diffusing emerin populations seen in

experiments [12]. We set their diffusion coefficient to νA = νslow (see Sec. 5.3 for data).
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On the other hand, we assume that emerin can also form transient complexes that only

show weak interactions with potential molecular binding partners and do not form higher-

order structures*, thus locally inhibiting increased molecule concentrations at the INM

through steric constraints. We denote these molecular complexes by I. We assume that,

compared toA complexes, the diffusion of I complexes is less affected by interactions with

potential molecular binding partners, and therefore associate I complexes with the more

rapidly diffusing emerin populations seen in experiments. We set their diffusion coefficient

to νI = νfast (see Sec. 5.3 for data). Note that I complexes may contain a single emerin

molecule or multiple emerin molecules. For instance, the EDMD-associated P183H mu-

tation yields spontaneous formation of emerin dimers that are long-lived enough to be

tracked in microscopy experiments, and seem unable to form higher-order structures [12,

127]. The diffusion properties of these P183H dimers are relatively similar to those found

for emerin monomers that are not part of higher-order structures [12].

Given experimental uncertainties, and to keep our model as general as possible, we

do not specify the exact stoichiometry of A and I complexes in terms of emerin molecules

or NBPs. A and I complexes may therefore correspond to a range of molecular struc-

tures, and are defined by their reaction and diffusion properties rather than their detailed

molecular composition. The precise diffusion properties of A and I complexes are likely

to depend on their detailed molecular composition. A more detailed model of emerin nan-

odomain self-assembly would therefore allow for more than just two types of molecular

complexes. We also note that, since experiments suggest that the regime of slow emerin

*Possibly, because emerin or NBPs are present in these complexes at stoichiometries or in molecular
conformations that are inconsistent with the assembly of higher-order structures.
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diffusion applies predominantly to emerin inside emerin nanodomains, we implicitly make

here the assumption that emerin nanodomains are dominated by A, rather than I, com-

plexes. Our model calculations are consistent with this assumption (see Sec. 5.3).

To understand the spontaneous formation of emerin nanodomains within the frame-

work of our model, consider a local fluctuation in the molecule concentrations at the INM

that produces a local excess of the activating molecule species. Due to the reaction prop-

erties of the activating molecule species, the molecule concentrations of both activators

and inhibitors will subsequently be increased at that membrane location. Since it is as-

sumed that νI > νA, the inhibiting molecule species diffuse faster out of this membrane

region than the activating molecule species, producing a positive feedback in which local

molecule concentrations of both the activating and inhibiting molecule species are locally

increased. Finally, a steady state is reached when enough of the inhibiting molecules

diffuse into the membrane regions from the surrounding membrane so that the local con-

centrations of activating and inhibiting molecule species balance each other.

At the most basic level, I and A complexes may both spontaneously assemble or

disassemble. Since, at least in wild-type systems, the self-assembly of emerin into nan-

odomains seems to rely on interactions with A complexes (see below), we assume that

the disassembly of I and A is much faster than their spontaneous assembly. For simplic-

ity, we therefore set the spontaneous assembly rates of both I and A to be equal to zero
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for wild-type emerin (but see Sec. 5.3.4.1) while allowing for the spontaneous dissociation

reactions

I
f1−→ ∅ , (5.16)

A
g1−→ ∅ , (5.17)

where f1 and g1 denote decay rate constants. The rate constants f1 and g1 fix the time

scales associated with the reaction and diffusion properties of the I and A populations in

our model of emerin nanodomain self-assembly.

In the absence of direct experimental measurements of f1 and g1, we fix f1 and g1

through a simple physical argument inspired by the mathematics of Turing instabilities

[140]. Note that, in the absence of reactions increasing the I and A concentrations, f1

and g1 in Eqs. (5.16) and (5.17) yield estimates for the root-mean-square displacements

(RMSDs) of the I and A populations over their lifetime at the membrane, 2
√
νI/f1 and

2
√
νA/g1. We assume that the I population can globally explore the system and, hence,

diffuse over the characteristic scale of emerin nanodomains (∼ 20 nm), while the A pop-

ulation stays localized over molecular scales. We therefore set f1 = 30 s−1 and g1 = 30f1

resulting, for wild-type systems under no mechanical stress, in RMSDs of about 16 nm

and 1 nm for the I and A populations. While we use these values of f1 and g1 throughout,

we find that f1 or g1 can be changed by as much as 50%, or even more, to obtain emerin

nanodomains with similar properties.
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Based on the experimental observation that emerin can form higher-order structures,

we assume that the presence of A at a particular membrane location increases the likeli-

hood that additional emerin complexes assemble at that membrane location. This could,

for instance, result from the preferential recruitment of NBPs to membrane regions with

elevated A concentrations, from a direct binding of A to emerin monomers, or from a local

slowing down of emerin diffusion in membrane regions with elevated A concentrations.

We allow here for both the possibility that an A complex can facilitate the assembly of

another A complex,

A+∅ g2−→ 2A , (5.18)

and, oppositely, for the possibility that a newly formed emerin complex is unable to form

higher-order structures,

A+∅ f2−→ A+ I . (5.19)

In the case of emerin complexes that can form higher-order structures, we also allow for

the possibility that two emerin complexes present in a particular membrane region can

interact to facilitate the formation of a third emerin complex,

2A+∅ f3−→ 3A . (5.20)
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Note that, mathematically, the above reaction provides the only fundamental distinction

between I and A, together with our assumption that A can locally increase the concentra-

tion of I, but not vice versa. Equations (5.18)–(5.20) thus encapsulate our model assump-

tions about the key reaction properties of A and, by extension, I complexes underlying

emerin nanodomain self-assembly.

To achieve a non-trivial steady-state distribution of emerin, decay and creation rates

across multiple emerin complexes must take comparable magnitudes. In particular, due

to the slow diffusion rates of A complexes, the decay and creation rates of different A

complexes must be approximately equal to each other so that a non-trivial steady state

can be achieved. Furthermore, as mentioned above, we expect from experiments that

emerin nanodomains are predominantly composed of A, rather than I, complexes. We

therefore expect f2 in Eq. (5.19) to be smaller than f1 in Eq. (5.16). For the calculations

described here we set f2 = f1/2, but other choices f2 ≲ f1 give similar results. In the most

basic picture, we expect g1 and g2 in Eqs. (5.17) and (5.18) to take similar magnitudes,

and we therefore set g2 = g1. Since the reactions in Eqs. (5.18) and (5.19) correspond

to first-order reactions, while the reaction in Eq. (5.20) corresponds to a second-order

reaction, we generally expect g3 to be substantially smaller than g1 and g2. We set here

g3 = g2/15 = 2f1 for wild-type emerin under no mechanical stress. Again, we find that

other choices for g1 ≈ g2 and g3 ≪ g2 give similar results.

In all reaction (and diffusion) processes that locally increase the molecule concentra-

tion at the INM, we include steric factors inhibiting the formation of emerin complexes in

crowded membrane regions (or their diffusion to such membrane regions) such that the

sum of the dimensionless I and A concentration fields, (I + A) with I = I (x, y, t) and
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A = A (x, y, t), cannot exceed 1 anywhere in the system (see Sec. 5.1). Thus, I (x, y, t)

and A (x, y, t) represent the fraction of the free membrane area covered by I and A com-

plexes.

5.2.1 Reaction kinetics of emerin nanodomains

Equations (5.16), (5.17), (5.19), and (5.20) provide the key reactions entering our

model of emerin nanodomain self-assembly. In particular, the reactions I → ∅ and

A → ∅ in Eqs. (5.16) and (5.17) represent the spontaneous disassembly of I and A

complexes. Conversely, the reactions A + ∅ → A + I, A + ∅ → 2A, and 2A + ∅ → 3A

in Eqs. (5.19), (5.18), and (5.20) represent the assembly of I and A complexes, which we

take to be catalyzed by A complexes. We mathematically account for these reactions in

the reaction-diffusion equations in Eqs. (5.1) and (5.2) through the formalism of chemical

dynamics [140–144],

F (I, A) = −f1I + f2 (1− I − A)A (5.21)

and

G(I, A) = −g1A+ g2 (1− I − A)A+ g3

(
1− I − A

1− Ī − Ā

)
A2

Ā
(5.22)

with

Ā =
f1 (g2 − g1 + g3)

f1g2 + f2 (g1 − g3)
, Ī =

f2
f1

(
g1 − g3
g2

)
Ā . (5.23)

For instance, the decay of I and A complexes into emerin and NBPs is characterized by

the terms −f1I and −g1A in F and G. We consider steric effects by imposing the con-

straint 0 ≤ I + A ≤ 1, leading to a reduction in the relevant reaction rates by a factor of
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(1− I − A). The reaction A + ∅ → A + I, represented by the term +f2 (1− I − A)A

in F, and the reactions A + ∅ → 2A and 2A + ∅ → 3A, represented by the terms

+g2 (1− I − A)A and +g3 [A
2 (1− I − A)] /

[(
1− Ī − Ā

)
Ā
]

in G, model the activation of

elevated concentrations of I complexes by A complexes and the self-activation of A com-

plexes.

As explained in Section 5.2, our Turing model assumes that the I complexes act as

inhibitors and A complexes as activators, leading to I11 < 0 and A22 > 0 in Eq. (5.6),

respectively. Note that the evaluation of I11 in Eq. (5.6), utilizing Eq. (5.21), results in the

condition

I11 = −f1 − f2Ā < 0 , (5.24)

Since our model does not have any reactions for which I complexes stabilize other I

complexes, we have that I complexes have the property inhibiting other I complexes

through steric repulsion, I11 < 0, due to their finite size. Utilizing Eq. (5.22) to assess A22

in Eq. (5.6) yields the following condition for a Turing instability,

A22 = −g1 + g2
(
1− Ī − 2Ā

)
+ g3

[
2− Ā

1− Ī − Ā

]
> 0 . (5.25)

The reaction 2A+∅ → 3A represents the minimal reaction capable of yielding A22 > 0 in

our model. We note here that the reaction A+∅ → 2A is insufficient for the self-activation

of A complexes since it would fail to give A22 > 0 in our model.

Consider that, as per the conditions outlined in Sec. 5.1, we must have I11A22 −

I12A21 > 0 [refer to Eq. (5.9)]. Consequently, it follows that I12 and A21 must possess
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opposite signs. In our model, we do not have any reaction in which I complexes stabilize

A complexes. Thus, we find, by evaluating A21 in Eq. (5.6) and utilizing Eq. (5.22), that

A21 = −g2Ā− g3Ā/(1− Ī − Ā) < 0 . (5.26)

Notably, in our model, the reaction A+∅ → A+I embodies the simplest scenario wherein

I complexes are stabilized by A complexes. Evaluating I12 in Eq. (5.6), using Eq. (5.21),

yields the following condition for a Turing instability,

I12 = f2
(
1− Ī − 2Ā

)
> 0 . (5.27)

The reaction terms in F and G are such that the reaction rate constants f1, f2, g1, g2,

and g3 are all expressed in units of s−1. For emerin nanodomain self-assembly to occur

through a Turing instability, these reaction rates, for a given, observed set of values of

the I and A diffusion coefficients νI and νA, must satisfy the mathematical constraints in

Eqs. (5.8), (5.9), (5.13), (5.14), and (5.24)–(5.27).

5.2.2 Numerical implementation

The reaction and diffusion processes considered in our model imply, via the Turing

mechanism for nonequilibrium pattern formation [140], a characteristic length scale ℓc,

which can be estimated through a linear stability analysis (see Sec. 5.1) [121] and which

we corroborate through numerical solutions of our reaction-diffusion equations. The cor-

responding characteristic diameter of emerin nanodomains, ℓΦ, is given by ℓΦ ≈ ℓc/2.
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Similarly, the characteristic time scale for the self-assembly of emerin nanodomains, τ ,

can be estimated as τ ≈ ℓ2c/νA, where νA < νI is the diffusion coefficient of the slower

molecule species (A complexes) considered in our model. However, due to uncertain-

ties in our estimates of f1 and g1, which fix the time scales associated with I and A (see

Sec. 5.2), as well as the mean-field character of the formulation of our model [11], we

only attach limited physical significance to the values of τ obtained from our model calcu-

lations, and show τ for completeness.

For our numerical solutions of the reaction-diffusion Eqs. (5.1) and (5.2), we employed

the DifferentialEquations library in Julia [228, 229]. We compared numerical solutions

obtained with a range of solvers—including BS3, Tsit5, Runge-Kutta, and GMRES—and

found similar results. The numerical solutions shown here were obtained using the GM-

RES solver. We used periodic boundary conditions with a system size 400 × 400 nm2,

which is significantly larger than the size of emerin nanodomains observed in experi-

ments [12]. Smaller system sizes approaching the size of emerin nanodomains can yield

finite-size artifacts in the emerin patterns generated by our model.

The numerical solutions presented in (Sec. 5.3) were obtained from initial conditions

that were perturbed randomly about the homogeneous steady state of the system, (I, A) =

(
Ī , Ā

)
, setting the diffusion coefficients νI = νfast and νA = νslow (see Fig. 5.1 for data of

νfast and νslow for each system considered here), and utilizing the reaction rate constants

in Sec. 5.3 for each individual system discussed. Random perturbations were drawn from

a uniform distribution over [−0.0005, 0.0005]. Note that the reaction rates in our model fix

the homogeneous steady state (I, A) =
(
Ī , Ā

)
of the system (see Sec. 5.2.1) and were

chosen for each system considered here to satisfy the constraints for a Turing instability
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FIG. 1. A-I reaction scheme in our model of the self-assembly of emerin nanodomains in the INM. In the left column, we
show the reactions that change the dimensionless I concentration (fractional area covered by I), which include a first-order
spontaneous decay reaction and a first-order creation reaction activated by A. In the right column, we show the reactions that
change the dimensionless A concentration (fractional area covered by A), which include first-order reactions analogous to those
in the left column (spontaneous decay and self-activation of A), as well as a second-order self-activation reaction. All reactions
locally increasing I or A include the steric repulsion factor (1 � I � A). Analogous steric factors are included in the di↵usion
terms for I and A. The constant concentrations (Ī , Ā) are determined by the reaction rates and correspond to the homogeneous
steady state of the system, (I, A) = (Ī , Ā).

molecule concentration at the INM, we include steric fac-
tors to prevent complex formation in crowded membrane
regions. This ensures that the sum of the dimensionless
I and A concentration fields, (I + A) with I = I(x, y, t)
and A = A(x, y, t), never exceeds 1 anywhere in the sys-
tem (see Fig. S3). Thus, I(x, y, t) and A(x, y, t) represent
the fraction of free membrane area covered by I and A
complexes.

In Sec. SII, we present analytical predictions of
emerin concentrations (⇢slow) and relative densities
(hNslowi/hNfasti) in nanodomains compared to the sur-
rounding areas, based on measured di↵usion properties
and experimental data. In Sec. SIII, we introduce the
reaction scheme (see Fig. S1) for our reaction-di↵usion
model, along with the estimated reaction rate constants
used for various emerin systems. Details and predictions
of these models applied to di↵erent emerin systems, in-
cluding wild-type and mutant forms under di↵erent con-
ditions, are summarized in Fig. ??, with corresponding
numerical solution snapshots shown in Fig. 2. Sec. SIV
outlines our numerical implementation approach, while
the remaining portions of this letter discuss our model’s
predictions of emerin nanodomain properties, namely
nanodomain diameter (`�) and fractional area coverage
(F�), adapting the model to explain observed changes
under force application and mutation.

III. RESULTS

A. Wild-type system under no mechanical stress

In unperturbed wild-type (“WT”) systems, our model
spontaneously self-assembles emerin nanodomains from
random initial conditions. These nanodomains have a
characteristic diameter `� ⇡ 22 nm in the steady state,
closely matching experimental observations (22 ± 11 nm
[1]). Our model also predicts that the fraction of available
emerin nanodomain area covered by I and A complexes
is F� ⇡ 0.15. This is comparable to the mean fractional
area of emerin nanodomains covered by emerin, approxi-
mately 3–15%, suggested by previously published data [1]
and further experimental estimates (see Sec. SI). As ex-
pected, our numerical solutions yield elevated concentra-
tions of A complexes compared to I complexes in emerin
nanodomains [Fig. ??(WT)].

Though our model’s output aligns closely with experi-
mental findings in several ways, our model exhibits some
disparities with experiments which can be potentially ex-
plained. For instance, our model predicts F� ⇡ 0.15
which lies within experimental margins for emerin area
coverage of nanodomains, but is on the high side. Since
we impose steric constraints so that 0  I + A  1,
if I and A were to cover the entire free INM area in
emerin nanodomains, we would have F� = 1. Assum-
ing the steric constraints on I and A are set by emerin
rather than other components, F� = f corresponds to an
average fractional area coverage f of emerin in the nan-
odomain. Our numerical solutions yield f ⇡ 15% inside

Figure 5.1: Table comparing experimental data on emerin [12] (orange) and predictions
of our reaction-diffusion model (emerin nanodomain diameter, ℓΦ, and ratio of the fraction
of emerin nanodomain area covered by I and A complexes relative to that of the wild
type system under no mechanical stress, FΦ/F

WT
Φ ) (red) for the various emerin systems

in Fig. 5.2 and the ∆95-99 system under no mechanical stress. For ∆95-99 systems
under no mechanical stress, emerin nanodomains were not observed to self-assemble
in experiments [12] and were not predicted to self-assemble by our model. So, for the
∆95-99 system under no mechanical stress, we specify “null" for FΦ/F

WT
Φ and ℓΦ.

in Eqs. (5.8), (5.9), (5.13), (5.14), (5.24)–(5.27), with the exception of our solutions for

the ∆95-99 emerin system under no mechanical stress. Our model for the ∆95-99 emerin

system under no mechanical stress does not yield a Turing pattern due to not satisfying

the constraints for a Turing instability. In Sec. 5.2.1 we express the reaction scheme used

to obtain our numerical solutions in Sec. 5.3 in a form that, for mathematical convenience,

explicitly involves the homogeneous steady state (I, A) =
(
Ī , Ā

)
, with all reaction rates

having units of s−1. We used a 150 × 150 grid for all numerical solutions, and checked

that a finer grid produced similar results. The steady states solutions provided in Sec. 5.3

correspond to times t = 100τ in our numerical solutions.

To calculate the average joint concentration of (I + A) inside emerin nanodomains,

FΦ, we first find, for a given nanodomain, the grid point associated with the maximum of

(I + A) in the steady state of the system. We then average (I + A) over all grid points
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within a radius ℓΦ/2, rounded to the nearest multiple of the grid spacing, about this (local)

maximum of (I + A). We repeat this algorithm for four additional emerin nanodomains

and average over five nanodomains to obtain FΦ. We found that this last step was, strictly

speaking, not necessary, with FΦ evaluated over a single nanodomain and FΦ evaluated

over multiple nanodomains yielding similar results.

5.3 Results

5.3.1 Wild-type system under no mechanical stress

For wild-type (“WT") systems under no mechanical stress, we find that our model

yields spontaneous self-assembly of emerin nanodomains from random initial conditions.

In the steady state of the system, we find that the emerin nanodomains obtained from our

model have a characteristic diameter ℓΦ ≈ 22 nm, in good agreement with 22 ± 11 nm in

diameter observed in experiments [12] [see Figs. 5.1 and 5.2(a)]. Thus, our model yields

spontaneous self-assembly of emerin nanodomains with a size that is consistent with

experimental observations. Our model also predicts that the fraction of available emerin

nanodomain area covered by I and A complexes is FΦ ≈ 0.15. This is comparable to

the mean fractional area of emerin nanodomains covered by emerin, approximately 3–

15%, suggested by previously published data [12] and further unpublished experimental

estimates [230]. As expected, our numerical solutions yield elevated concentrations of A

complexes compared to I complexes in emerin nanodomains [Fig. 5.2(a)].
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Figure 5.2: Colormaps depict numerical solutions for A, I, and (A+ I) (overlay) calcu-
lated from our emerin nanodomain self-assembly model (see Sec. 5.2.2 for numerical
implementation), where I and A denote fields for the fraction of the INM area locally
covered by I and A complexes, respectively. The colorbar scale indicates the values of
the fields A, I, or (A+ I). We show model solutions for wild-type systems (a) with and
(b) without mechanical stress, (c) Q133H systems without mechanical stress, (d) P183H
systems without mechanical stress, and (e) ∆95-99 systems under mechanical stress.
Diffusion coefficients νI and νA are as indicated in Fig. 5.1 with νA = νslow and νI = νfast.
The reaction rates f1, f2, g1, g2, and g3 utilized in our calculations are discussed in (a)
Sec. 5.2, (b) Sec. 5.3.2, (c) Sec. 5.3.3, (d) Sec. 5.3.4, and (e) Sec. 5.3.6. The colormaps
depict numerical solutions at the corresponding time t = 100 τ (see Sec. 5.2.2), with (a)
τ ≈ 6 s, (b) τ ≈ 17 s, (c) τ ≈ 3 s, (d) τ ≈ 50 s, (e) τ ≈ 74 s.
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Though our model’s output aligns closely with experimental findings in several ways,

our model exhibits some disparities with experiments which can be potentially explained.

For instance, our model predicts FΦ ≈ 0.15 which lies within experimental margins for

emerin area coverage of nanodomains, but is on the high side. Since we impose steric

constraints so that 0 ≤ I + A ≤ 1, if I and A were to cover the entire free INM area in

emerin nanodomains, we would have FΦ = 1. Assuming the steric constraints on I and

A are set by emerin rather than other components, FΦ = f corresponds to an average

fractional area coverage f of emerin in the nanodomain. Our numerical solutions yield

f ≈ 15% inside emerin nanodomains, while experiments suggest a range 3–15%, referring

to the fractional area coverage of emerin alone. This implies that steric constraints on I

and A in our model arise not only from emerin but also from other interacting molecule

species, supporting our assumption that I and A complexes involve both emerin and

NBPs.

Additionally, the model generates closely spaced emerin nanodomains, approximately

10 nm apart and consistently 22 nm in diameter. In contrast, experimental emerin nan-

odomains exhibit variations in size, shape, and spacing, often exceeding 10 nm between

them [12]. However, this discrepancy is unsurprising, since, by definition, our mean-

field model inherently lacks the molecular noise present in actual molecular reactions and

diffusion [231]. In the INM, variations in nanodomain properties likely arise from hetero-

geneous INM composition involving molecule species other than emerin and NBPs and

fluctuations in NBP properties. We note that the I domains of our model have a broader

profile than the A domains they overlap, which is a characteristic of the Turing mechanism,

where the outward diffusing flow of the fast inhibitor I complexes balances the surge of
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emerin complexes at the center of nanodomains and stabilizes the nanodomains. Due to

the close spacing between emerin nanodomains, the I domains exhibit linkage.

Lastly, our numerical solutions yield an area coverage of (I + A) of about 4% outside

emerin nanodomains. This is substantially higher than the expected mean local fractional

area covered by emerin outside emerin nanodomains (≲ 2%) [12, 230]. Here, again, we

note that our model generates closely spaced emerin nanodomains with an inter-domain

distance of around 10 nm, in contrast to experiments which often reveal larger spacings

between nanodomains, likely due to disruptions in the noisy INM environment [12]. So,

when comparing our model’s results on (I + A) outside emerin nanodomains to experi-

mental findings, it’s important to focus on closely spaced nanodomains. Experimentally

observed emerin density maps, albeit somewhat blurred by rendering effects, suggest that

emerin density is notably higher between closely spaced emerin nanodomains. Together

with our model’s more stringent steric constraints on I and A, which tend to overestimate

the local emerin density, this could explain why our model shows somewhat elevated val-

ues of (I + A) outside emerin nanodomains compared to experimentally observed mean

emerin concentrations outside these nanodomains.

5.3.1.1 Crowding effects due to emerin monomers

Emerin monomers cover ∼ 0.1% of the INM [230]. To test the possible effect of

steric constraints due to emerin monomers on our model predictions, we accounted for a

“background” concentration of emerin monomers by including a modified steric repulsion

term (1− I − A−m) in the reaction-diffusion dynamics considered here, with a constant

fractional area m = 0.002 = 0.2% of emerin monomers. Inserting m = 0.002 into our
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model and leaving all other model parameters unchanged resulted in slightly smaller nan-

odomains, of diameter ℓΦ ≈ 21 nm as opposed to the value ℓΦ ≈ 22 nm obtained with

m = 0, and a slight increase in the nanodomain coverage by I and A complexes, from

FΦ ≈ 15% to FΦ ≈ 17%. Thus, as expected, steric effects due to emerin monomers seem

to have little impact on the self-assembly of emerin nanodomains in our model.

For completeness, we tested whether steric effects due to emerin monomers could be

effectively compensated by decreasing the creation rate of I (“crowder”) complexes, from

f2 = f1/2 to f2 = 0.44f1. These adjustments yielded results that were nearly identical to

those obtained with the corresponding system with m = 0 [see Fig. 5.1 and Fig. 5.2(a)].

Using values of m smaller or not much greater than m = 0.002 also yielded similar results

as in Fig. 5.2(a). By increasing m to values substantially greater than m = 0.002 (e.g.,

m = 0.004), which effectively leads to a crowding out of I and A complexes, a transition

to stripe patterns can be obtained in our model.

5.3.2 Wild-type system under mechanical stress

Wild-type systems under mechanical stress (“WT; force") were observed to exhibit

emerin nanodomains with an increased diameter 60 ± 12 nm, but a density of emerin

inside nanodomains that was reduced by about 40% compared to unperturbed wild-type

systems [12]. Interestingly, it was thus found that while the density of emerin in emerin

nanodomains is decreased by mechanical stress, the overall number of emerin molecules

in nanodomains is increased. Our model of emerin nanodomain self-assembly provides

a simple explanation of these observations.
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Experiments suggest that, possibly due to a disruption in the interactions between

emerin and NBPs by mechanical force, the diffusion coefficients νA and νI are approxi-

mately doubled in the perturbed system compared to the unperturbed system [12] [see

Fig. 5.1]. In our model, this adjustment results in an increase in the diameter of emerin

nanodomains by about a factor of
√
2 (∼ 40%)†, while the fractional area of emerin nan-

odomains occupied by I and A complexes remains unchanged. This suggests that the

observed changes in νI and νA can partially, but not completely, account for the observed

changes in emerin nanodomains under mechanical stress.

As noted above, experiments show that mechanical stress tends to decrease the

emerin density in nanodomains. A physical interpretation of this observation is that me-

chanical stress diminishes interactions between emerin and NBPs necessary for the for-

mation of higher-order emerin structures. To test whether such a modification of the

reaction dynamics can explain the observed changes in nanodomain size, we decreased

the reaction rate g3, which parameterizes the formation of higher-order emerin structures

in our model, 2A + ∅ → 3A, by a factor of 1/2, to g3 = f1. As shown in Fig. 5.1 and

Fig. 5.2(b), this perturbation resulted in an increase in the characteristic emerin nan-

odomain diameter to ℓΦ ≈ 50 nm. Importantly, with this decrease in g3 we found that the

fractional area of emerin nanodomains occupied by I and A complexes was FΦ ≈ 0.1,

which amounts to FΦ/F
WT
Φ ≈ 0.7 ‡. Thus, the observed increases in the emerin diffusion

coefficients together with a reduction in the effective rate for the formation of higher-order
†This can be understood by noting that ℓc in Eq. (5.15) scales with the square roots of νI and νA [121].
‡Using g3 = 0.9f1 yields ℓΦ ≈ 56 nm and FΦ/F

WT
Φ ≈ 0.6, further aligning model outcomes with experi-

mental observations.
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emerin structures seem to underlie the observed changes in emerin nanodomains under

mechanical stress.

5.3.3 Q133H mutation

Experiments indicate that the EDMD-associated Q133H mutation of emerin decreases

emerin’s interactions with nuclear actin, resulting in an increased mobility of emerin as

well as increased formation of higher-order emerin structures [12, 136, 232–234]. It was

found experimentally that, under no mechanical stress, the Q133H mutation yields emerin

nanodomains of statistically similar size to the wild-type system under no mechanical

stress and leads to an increase in the density of emerin in nanodomains by approximately

50% compared to the wild-type system under no mechanical stress [12]. Our model can

account for these observations.

It was found in experiments that, for Q133H emerin, the rapidly- and slowly-diffusing

emerin populations have diffusion coefficients of approximately νfast = 3 × 10−3 µm2/s

and νslow = 4 × 10−4 µm2/s, respectively [12]. Proceeding as for wild-type emerin, we

thus set νA = νslow and νI = νfast for Q133H emerin. We find that these changes in the

diffusion coefficients of I and A complexes result in a slight increase in the diameter of

emerin nanodomains, by approximately§ 10%, with no appreciable change in the fractional

area of emerin nanodomains occupied by I and A complexes. Thus, the changes in the

diffusion properties observed for Q133H emerin do not account for the observed changes

in the overall properties of emerin nanodomains.
§Again, this can be understood from the scaling of ℓc in Eq. (5.15) with the diffusion coefficients νI and

νA [121].
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We hypothesized that, possibly due to its decreased interactions with nuclear actin,

Q133H emerin has an increased propensity to interact with other Q133H emerin as well

as with NBPs to form higher-order structures. In our model, A complexes capture inter-

actions between emerin and NBPs that can yield higher-order emerin structures, while I

complexes passively inhibit the formation of higher-order emerin structures through steric

constraints. We therefore assume that, compared to A complexes formed from wild-type

emerin, all reaction rates associated with A complexes formed from Q133H emerin are in-

creased, including the reactionA+∅ → A+I, while reactions solely involving I complexes

are not affected. In the specific reaction scheme considered here (see Sec. 5.2), the re-

action I → ∅ with rate f1 is the only reaction not directly involving A complexes. Thus, we

take f1 to be unaffected by the Q133H mutation while, for simplicity, we increase all other

reaction rates in the model—f2, g1, g2, and g3—by the same factor. Figs. 5.1 and 5.2(c)

shows the resulting model results obtained with an increase by 30% in the reaction rates

f2, g1, g2, and g3 compared to the wild-type system under no mechanical stress.

With the above assumptions, our model yields Q133H emerin nanodomains with ℓΦ ≈

18 nm [see Figs. 5.1 and Fig. 5.2(c)]. Furthermore, we find that FΦ ≈ 0.23, which amounts

to FΦ/F
WT
Φ ≈ 1.5. These model results are in good agreement with the aforementioned

experiments on the Q133H emerin system [12].

5.3.4 P183H mutation

The EDMD-associated P183H mutation of emerin is thought to yield more pronounced

interactions between emerin and NBPs than wild-type emerin [131, 135, 136], which are
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believed to slow down the diffusion of P183H emerin compared to wild-type emerin and

disrupt the formation of higher-order emerin complexes—possibly due to incorrect stoi-

chiometries or arrangements of emerin and NBPs in supramolecular complexes. Experi-

ments show that P183H emerin can form dimers that diffuse significantly faster than other

P183H oligomers [12]. P183H dimers seem to be unable to efficiently form higher-order

emerin structures [12, 127]. It was found experimentally that, under no mechanical stress,

the P183H mutation yields larger emerin nanodomains than the wild-type system under

no mechanical stress, with an emerin nanodomain diameter of approximately 35± 12 nm

(compared to approximately 22 ± 11 nm for the wild-type system under no mechanical

stress), and a reduction in the density of emerin in nanodomains by approximately 70%

compared to the wild-type system under no mechanical stress [12]. Thus, contrary to

the Q133H mutation, the P183H mutation of emerin increases the nanodomain size while

decreasing FΦ. Combining insights gleaned from the wild-type system under mechanical

stress (see Sec. 5.3.2) and Q133H emerin (see Sec. 5.3.3), our model is able to account

for these observations.

It was found in experiments that, for P183H emerin, the rapidly- and slowly-diffusing

emerin populations have diffusion coefficients of approximately νfast ≈ 1.5 × 10−3 µm2/s

and νslow ≈ 1×10−4 µm2/s, respectively [12]. On this basis, we set here νI = νfast and νA =

νslow. These changes to our model produced, compared to the wild-type system under

no mechanical stress, a decrease in ℓΦ by approximately¶ 50% with an increase in FΦ by

about|| 30% compared to the wild-type system under no mechanical stress. Thus, similarly
¶Again, this can be understood from the scaling of ℓc in Eq. (5.15) with the diffusion coefficients νI and

νA [121].
||This can be understood by noting that, compared to the wild-type system, the ratio νA/νI is decreased

in the P183H system, thus facilitating larger concentrations of A and, hence, I inside emerin nanodomains.
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as for Q133H emerin (see Sec. 5.3.3), the changes in the diffusion properties observed

for P183H emerin do not account for the observed changes in the overall properties of

emerin nanodomains.

As mentioned above, experiments suggest that P183H emerin shows, compared to

wild-type emerin, a reduced ability to self-assemble into higher-order structures. Follow-

ing similar reasoning as for Q133H emerin, we therefore decreased the rates associated

with all “activating” reactions in our model. In particular, we now decreased (rather than

increased) the rates f2, g1, g2, and g3 by 30% compared to the wild-type system under

no mechanical stress. This adjustment to our model produced emerin nanodomains that

were about 18 nm in diameter, and reduced FΦ by about 20% compared to the wild-type

system under no mechanical stress. Thus, such a global reduction in all rates associated

with reactions involving A complexes decreased, consistent with experimental observa-

tions, ⟨I + A⟩, but also decreased (rather than increased) the nanodomain size.

In analogy to the wild-type system under mechanical stress (see Sec. 5.3.2), we hy-

pothesized that the P183H mutation has a more pronounced effect on the formation of

higher-order emerin structures. Decreasing g3 to g3 = f1/2, we found that the nan-

odomain diameter increased to ℓΦ ≈ 35 nm and FΦ/F
WT
Φ decreased to about 0.4 [see

Figs. 5.1 and 5.2(d)]**. Thus, with the values of νI and νA measured for P183H emerin,

we are able to account for the aforementioned experiments on the P183H emerin sys-

tem [12] via a reduction in the rates of all reactions involving A complexes, with a more

**If we use g3 = 0.6f1 rather than g3 = f1/2 and decrease f2, g1, and g2 by 35% rather than 30%
compared to the wild-type system under no mechanical stress, our model produces P183H emerin nan-
odomains with ℓΦ ≈ 32 nm and FΦ/F

WT
Φ ≈ 0.3, further improving the agreement between model results

and experimental observations.
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pronounced reduction in the reaction rate associated with the formation of higher-order

emerin complexes.

5.3.4.1 Spontaneous dimerization

P183H emerin has a higher propensity to dimerize than wild-type emerin. In particular,

P183H emerin can dimerize even at the outer nuclear membrane in the absence of emerin

nanodomains [12]. This observation suggests that P183H dimers, which are represented

by I complexes in our model, can form spontaneously in the absence of A complexes. To

test to what extent our model predictions change if one allows for the spontaneous for-

mation of dimers, we extended our reaction scheme in Sec. 5.2.1 to allow for the reaction

∅ → I with reaction rate f0 in units of s−1. This modifies F to

F (I, A) = f0Ī

(
1− I − A

1− Ī − Ā

)
− f1I + f2 (1− I − A)A (5.28)

with

Ā =
(f1 − f0) (g2 − g1 + g3)

g2 (f1 − f0) + f2 (g1 − g3)
, Ī =

f2 (g1 − g3)

g2 (f1 − f0)
Ā . (5.29)

We found that such a modified reaction scheme can yield similar results for P183H emerin

as described above. For instance, setting f0 = 0.1f1, decreasing f2 from f2 = 0.35f1 to

f2 = 0.25f1 to compensate for the additional creation of I complexes through the reaction

∅ → I, and setting g3 = 0.6f1 rather than g3 = f1/2 produces results similar to those in

Figs. 5.1 and 5.2(d).
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5.3.5 ∆95-99 mutant system under no mechanical stress

Experiments indicate that the EDMD-associated ∆95-99 mutation of emerin yields an

approximately random emerin distribution across the INM at no mechanical stress, with

little or no domain formation and ∆95-99 emerin covering a fractional area ≲ 2% of the

INM [12]. ∆95-99 emerin is thought to exhibit reduced interactions with some NBPs (e.g.,

lamin A/C and/or nuclear actin) [128, 131, 135]. This conclusion is also supported by

experiments on wild-type emerin, which show that depletion of NBPs results in impaired

formation of higher-order emerin structures in the INM [12]. Based on our results on

P183H emerin (see Sec 5.3.4), our model is able to account for these observations.

It was found in experiments that the mobility of ∆95-99 emerin on the INM is reduced by

approximately a factor of two compared to wild-type emerin under no mechanical stress,

νfast ≈ 1 × 10−3 µm2/s and νslow ≈ 1.5 × 10−4 µm2/s [12] (see Fig. 5.1). We thus set

νI = νfast and νA = νslow in our model. This adjustment to our model results in a decrease

in the diameter of emerin nanodomains by about†† 30%, while FΦ is decreased by about

20% compared to the wild-type system. Thus, the observed decrease in νA and νI is

not sufficient to account for the severely impaired self-assembly of emerin nanodomains

observed for the ∆95-99 mutation of emerin.

As mentioned above, experiments suggest that ∆95-99 emerin has a decreased propen-

sity to self-assemble into higher-order structures. Following similar reasoning as for

P183H emerin, we therefore decreased the rates associated with all “activating” reactions

in our model. Interestingly we find that, for the diffusion coefficients measured for ∆95-99
††Again, this can be understood from the scaling of ℓc in Eq. (5.15) with the diffusion coefficients νI and

νA [121].
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emerin, a decrease in the rates f2, g1, g2, and g3 by as little as 20% compared to the un-

perturbed wild-type emerin system leads to a destabilization of emerin nanodomains and

results, in our mean-field model, in a homogeneous steady state. In particular, proceed-

ing as for P183H emerin and decreasing f2, g1, and g2 by 30% while decreasing g3 from

g3 = 2f1 to g3 = f1/2 (see Sec 5.3.4) resulted in a homogeneous steady state of the sys-

tem with ⟨I +A⟩ ≈ 2%. As discussed above, we expect the value of ⟨I +A⟩ obtained from

our model to yield an upper bound on the fractional area coverage of emerin, because I

and A involve not only emerin but also NBPs. Our model results for ∆95-99 emerin under

no mechanical stress are therefore consistent with experimental observations [12].

5.3.6 ∆95-99 mutant system under mechanical stress

Experiments indicate that application of mechanical stress to the ∆95-99 emerin sys-

tem (“∆95-99; force") results in the self-assembly of emerin nanodomains with approxi-

mate diameter 75± 20 nm and emerin densities about 25% compared to the unperturbed

wild-type emerin system [12]. Based on the wild-type emerin system under mechanical

stress (see Sec. 5.3.2) we modified our model of the unperturbed ∆95-99 emerin system

(see Sec. 5.3.5) to capture the mechanically stressed state of the ∆95-99 emerin system.

From experimental observations of the perturbed state of the wild-type emerin sys-

tem, we expect the mobility of ∆95-99 emerin to increase when the system is put under

mechanical stress [12]. However, it was initially not clear how exactly mechanical per-

turbation of the ∆95-99 system impacts the values of νI and νA. Assuming that A com-

plexes formed from ∆95-99 emerin respond similarly to mechanical stress as A complexes
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formed from wild-type emerin, we double νA to νA = 3 × 10−4 µm2/s. Furthermore, we

hypothesize that the diffusion rate of I complexes may respond more strongly to mechan-

ical stress than the diffusion rate of A complexes‡‡—this could, for instance, be the case if

the combined effects of the ∆95-99 mutation and application of mechanical stress largely

decouple I complexes from their potential binding partners—as indicated by the large di-

ameter of the nanodomains observed (75±20 nm), since ℓc depends on
√
νI . We find that

with, for instance, νI = 6 × 10−3 µm2/s, ∆95-99 emerin self-assemble into nanodomains

with ℓΦ ≈ 53 nm and FΦ/F
WT
Φ ≈ 0.5.

These results are broadly consistent with published experimental data on the ∆95-99

emerin system under mechanical stress [12]. Closer agreement between model results

and experimental observations can be obtained by assuming, in analogy to the wild-type

emerin system under mechanical stress (see Sec. 5.3.2), that mechanical stress also

modifies the reaction rate for 2A + ∅ → 3A in the ∆95-99 system. For instance, if we

decrease g3 from g3 = f1/2 to g3 = 0.35f1 we find ∆95-99 emerin nanodomains with

ℓΦ ≈ 74 nm and FΦ/F
WT
Φ ≈ 0.4 [see Figs. 5.1 and 5.2(e)]§§.

Interestingly, the diffusion coefficients of the ∆95-99 emerin system have recently been

measured [230] after we had made our initial predictions, and found them to be νfast ≈

6 × 10−3 µm2/s and νslow ≈ 4 × 10−4 µm2/s, which agree quite close with our predictions.

We found if we change νA = 3 × 10−4 µm2/s to νA = 4 × 10−4 µm2/s to better align with

these new measurements, and do not decrease g3 to g3 = 0.35f1, we get similar results
‡‡Simply doubling νI to νI = 2 × 10−3 µm2/s in our model, yields a homogeneous steady state of I

and A complexes, which does not align with experimental observations that mechanical perturbation of the
∆95-99 emerin system evokes the formation of nanodomains [12].

§§Decreasing g3 to g3 = 0.34f1, rather than to g3 = 0.35f1, yields nanodomains with ℓΦ ≈ 77 nm and
FΦ/F

WT
Φ ≈ 0.3, further improving the agreement between model results and experimental observations.
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as described above, with ℓΦ ≈ 71 nm and FΦ/F
WT
Φ ≈ 0.4. Since our initial prediction for νI

was based on the nanodomain diameter, these results further support a direct correlation

between emerin nanodomain properties and emerin reaction-diffusion characteristics.

141



Chapter 6

Overview and conclusions

This chapter offers summaries and conclusions for each of Chapters 2 through 5 and

discusses potential future research directions suggested by our findings.

6.1 Overview and conclusions of Chapter 2

In Chapter 2 we introduced a novel BVM for lipid bilayer deformations based on the

elasticity theory of protein-induced lipid bilayer thickness deformations [21–25, 27–34,

36–40]. In Sec. 2.1, we discussed the bilayer thickness deformation energy, in Eq. 2.3

and demonstrated how we incorporate the hydrophobic shape parameters of proteins in

the boundary conditions in Eqs. 2.12–2.14 to fix the lipid bilayer thickness deformation

energy. In Sec. 2.2 we described in detail our BVM for bilayer thickness deformations,

tested it against FEM solutions, and discussed how the BVM can be used to calculate

protein-induced lipid bilayer thickness deformations and their associated elastic energy

for general protein shapes. We also introduced a measure of accuracy [see Eq. (2.25)
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in Sec. 2.2.1], and APDs to optimize the efficiency and accuracy [see Sec. 2.2.2] of our

BVM.

Our BVM permits the construction of analytic series solutions of protein-induced lipid

bilayer deformations for arbitrarily large deviations from a circular protein cross section,

albeit can become computationally limited by the available floating point precision of num-

bers utilized (see Appendix A.2). In addition to the membrane protein cross section, our

BVM allows for a breaking of rotational symmetry about the protein center through angular

variations in the boundary conditions along the bilayer-protein interface—in particular, for

the scenarios considered in Chapters 2 and 3, in the protein hydrophobic thickness and in

the bilayer-protein contact slope along the bilayer-protein boundary. Our BVM reproduces

available analytic solutions for membrane proteins with circular cross section [23, 27, 30,

58, 59, 118] and yields, for membrane proteins with non-circular cross section, excellent

agreement with numerical, finite element solutions.

A limitation of the BVM arises for protein shapes that show extreme deviations from

circular symmetry, in which case BVM solutions tend to involve a large number of terms

and, hence, become increasingly intractable. In such cases it may be advisable to mod-

ify the APD method for the distribution of boundary points employed in Chapters 2–4,

so as to reduce the number of terms required in the lipid bilayer thickness deformation

field in Eq. (2.20) with Eq. (2.21). While we have focused here on bilayer thickness de-

formations, it would be interesting to use a BVM approach analogous to that employed

in Chapters 2–4 to construct analytic series solutions for other modes of protein-induced

lipid bilayer deformations such as, for instance, bilayer midplane or lipid tilt deformations

[22, 32–38, 54–56, 107, 153, 154, 158–161, 163, 186, 187]. On this basis one could,
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for instance, further investigate how anisotropic membrane protein shapes can give rise

to anisotropic membrane elastic properties [54, 55]. Furthermore, it would be interesting

to construct BVM solutions for membrane proteins embedded in bilayers with heteroge-

neous lipid composition [162, 235–239]. Notably, for calculating long-ranged lipid bilayer

deformations due to proteins of non-circular cross-section shape, the BVM may offer a

convenient and computationally efficient approach. In particular, as membrane tension

approaches zero, leading to theoretically infinite decay lengths for midplane deforma-

tions, numerical techniques like FDM and FEM can become computationally infeasible,

whereas the BVM remains viable.

6.2 Overview and conclusions of Chapter 3

In Chapter 3 we investigated the significance of protein shape in protein-induced lipid

bilayer thickness deformations. Based on the BVM solutions, in Sec. 3.1, we formulated

a simple analytic approximation of the lipid bilayer thickness deformation energy associ-

ated with general protein shapes [see Eq. (3.1) with Eq. (3.2)]. Through our BVM and

analytic approximation of the lipid bilayer thickness deformation energy, we surveyed the

dependence of protein-induced lipid bilayer thickness deformations on protein shape in

Sec. 3.2. We then applied our BVM and analytic approximation to investigate the impact

of protein shape in the assembly of transmembrane protein oligomers [see Sec. 3.3.1]

and transitions in transmembrane protein conformational states [see Sec. 3.3.2]. Here

we provide the conclusions of studies in regards to the impact of protein shape on lipid

bilayer deformations.
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We find that, for modest deviations from rotational symmetry, our analytic approxima-

tion of the lipid bilayer thickness deformation energy is in good agreement with BVM solu-

tions. These results suggest that, to a first approximation, the effect of membrane protein

shape on the energy of bilayer thickness deformations can be understood based on the

length of the circumference of non-circular protein cross sections. Moreover, our survey of

the dependence of protein-induced lipid bilayer thickness deformations on protein shape

reveals that protein shape tends to have a large effect on the energy of protein-induced

lipid bilayer thickness deformations, typically shifting the bilayer deformation energy by

more than 10 kBT .

In the case of non-circular protein cross sections, we find that protein self-interactions

provide an important motif for the energy of protein-induced lipid bilayer thickness defor-

mations. Such self-interactions arise for invaginations in the protein cross section, from

overlaps in the bilayer deformations induced at different sections of the bilayer-protein

interface. The basic phenomenology of membrane protein self-interactions can be under-

stood by drawing analogies with bilayer-thickness-mediated interactions between proteins

[22, 24, 25, 30, 41, 57, 58, 60, 61, 157, 161, 178–183]. In particular, membrane protein

self-interactions can effectively lower the energy cost of protein-induced lipid bilayer thick-

ness deformations for proteins with constant bilayer-protein hydrophobic mismatch and

zero bilayer-protein contact slope. For non-zero bilayer-protein contact slopes, or for vari-

ations in the bilayer-protein hydrophobic mismatch or in the bilayer-protein contact slope

along the bilayer-protein interface, protein self-interactions can yield dramatic shifts in the

bilayer thickness deformation energy. Thus, the interplay between the cross-sectional

shape of membrane proteins, protein hydrophobic thickness, and bilayer-protein contact
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slope yields a rich energy landscape of protein-induced lipid bilayer thickness deforma-

tions. Interestingly, the hydrophobic thickness or bilayer-protein contact slope of mem-

brane proteins may be modified in cells through, for instance, protein mutations, changes

in lipid composition, or the binding of peptides at the bilayer-protein interface, while protein

oligomerization and transitions in protein conformational state tend to change the cross-

sectional shape of membrane proteins. The results described here therefore suggest

general physical mechanisms for how protein shape couples to the function, regulation,

and organization of membrane proteins.

6.3 Overview and conclusions of Chapter 4

In Chapter 4 we introduced a simple model of the effect of temperature changes

on protein-induced elastic bilayer deformations to explore the intricate relationship be-

tween temperature, membrane mechanics, and the activation energies of key sensory

proteins. In Sec. 4.1 we described, based on experimental measurements, how tempera-

ture changes modify key bilayer mechanical properties. In Sec. 4.2 we developed, based

on previous work [27, 57, 59, 102, 107, 110, 111], membrane-mechanical models of tran-

sitions in the conformational states of bacterial chemoreceptor trimers, MscL ion chan-

nels, and Piezo ion channels. In Sec. 4.3 we combined the methodologies developed in

Secs. 3.1 and 4.2 to quantify the effect of temperature changes on the conformational

states of chemroeceptors, MscL, and Piezo. In Sec. 4.4 we discussed the implications of

our finding for chemoreceptor thermotaxis and tempertaure-dependent shifts in the gating

thresholds of MscL and Piezo.
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Temperature, being a fundamental environmental factor, significantly influences cellu-

lar physiology, impacting decision-making processes in microorganisms and the response

of multicellular organisms. Our research sought to understand how alterations in mem-

brane mechanical properties induced by temperature changes can impact the activation

energies of pivotal proteins involved in cellular perception. Our findings highlight several

critical aspects of the interplay between temperature and membrane protein conforma-

tional state. Most notably, we found that temperature variations can induce substantial

changes in the energy cost of protein-induced lipid bilayer deformations, with magnitudes

on the order of several kBTrm to tens of kBTrm. These results suggest a role for membrane

elastic properties in bacterial thermosensation.

Our findings suggest that the effect of increasing temperature on lipid bilayer deforma-

tions may be sufficient for the activation of chemoreceptors in E. coli, which aligns with

their observed thermophilic response [13]. We also found changes in temperature may

produce significant shifts in the activation energy of MscL through changes in membrane

thickness. These results are based on measurements of the temperature dependence

of the membrane hydrophobic thickness of DOPC lipid bilayers, representing synthetic

and pure lipid compositions [116]. However, biological membranes generally have highly

heterogeneous compositions. Interestingly, measurements of the Bacillus subtilis mem-

brane thickness dependence on temperature have revealed a decrease rate in membrane

thickness that is three-fold faster than that used in our model based on measurements of

DOPC bilayers [15, 116]. This observation suggests that our calculations for estimating

the effect of changes in temperature on chemoreceptors and MscL in E. coli cytoplasmic

membranes are conservative. Thus we may expect the functionality of chemoreceptors
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and MscL to have a stronger dependence on temperature through membrane mechanics

than that suggested by our results.

We have predicted that Piezo’s gating tension increases with decreasing temperature,

which we can trace back to the observed increase in lipid bilayer bending rigidity with

decreasing temperature. Interestingly, these results align with experimental observations

[108, 226] on the dependence of Piezo gating on temperature and bilayer bending rigid-

ity, suggesting that membrane rigidity may provide a membrane property through which

proteins can sense variations in temperature.

The results of our investigation in Chapter 4 indicates that certain transmembrane

proteins can detect variations in temperature through alterations in membrane thickness.

Interestingly, there is substantial evidence suggesting that DesK, a transmembrane pro-

tein known for its temperature-sensing ability, gauges temperature changes by monitoring

variations in membrane thickness [15, 43, 44, 46, 47, 70–79, 94, 95, 98–100, 240, 241].

Thus, it would be intriguing to conduct a quantitative analysis, akin to our investigations

on chemoreceptors and MscL, to assess the influence of temperature-induced membrane

thickness variations on DesK’s activation energy.

Beyond our focus on MscL and Piezo, the realm of thermosensation encompasses

other mechanosensors with intriguing temperature-sensitive attributes. Among these,

TREK/TRAK channels have emerged as notable examples. These mammalian chan-

nels are known to be gated by membrane tension and several have been shown to be

activated either through increases in temperature or through decreases in temperature

[48, 83, 84, 96, 97, 242–244]. These observations highlight the multifaceted nature of

mechanosensors, which can also double as thermosensors, suggesting that the interplay
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between membrane mechanics and temperature sensitivity extends beyond the proteins

we explored in this study [48].

Another well-known group of thermosensors is the Transient Receptor Potential (TRP)

channels which also double as chemoreceptors in mammalian cells [16, 52, 80–82]. In

recent years, mounting evidence has supported the hypothesis that TRPs are intrinsically

activated by temperature, owing to a temperature-dependent protein molar heat capac-

ity mechanism and, perhaps, also contributions due to bilayer-protein interactions [52,

195, 196]. Structural studies suggest significant conformational changes in TRPs upon

activation [51, 53, 195–206, 245, 246], aligning with the principles of thermodynamics,

which predict that substantial changes in protein molar heat capacities are associated

with substantial structural changes.

In addition to temperature-sensing through thermodynamic properties intrinsic to TRP

proteins, there is evidence suggesting that membrane mechanics may play a secondary

role in temperature sensing in TRP channels. For instance, experiments have shown that

alterations in membrane composition can influence the temperature activation thresholds

of TRPs [196, 245]. Notably, enriching the membrane with cholesterol leads to significant

increases in the activation temperature in TRVP1, causing shifts of several degrees Cel-

sius [196]. In these experiments, it was reported that the cholesterol enrichment of the cell

membrane resulted in an increase in membrane stiffness and a decrease in membrane

fluidity. So the observed increase in the activation temperature in TRVP1 due to choles-

terol enrichment may be attributed to an increase in membrane rigidity and a decrease

in membrane fluidity. In this context and in light of the results described in Chapter 4,
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it would be interesting to see experiments measuring the effect of changing membrane

thickness on TRP activation.

We acknowledge the complex nature of temperature sensing mechanisms in cells—in

particular, experimental difficulties associated with isolating temperature sensing mech-

anisms from the effects of temperature on other physiological parameters, and the need

to devise experimental techniques for this purpose. Perhaps, in analogy to studies on

mechanosensitive ion channels [14, 22], one potential experimental approach for assess-

ing whether bilayer mechanics plays a role in thermosensing could involve compensating

for temperature-induced changes in bilayer mechanical properties by altering the lipid

composition. For example, according to the results obtained in Chapter 4, chemoreceptor

trimers are increasingly biased towards the “on" state with increasing temperature. This

prediction critically depends on the observed decrease in lipid bilayer thickness with in-

creasing temperature. It might thus be possible to test the role of bilayer mechanics in the

thermosensitive behavior of chemoreceptors by counterbalancing temperature-induced

variations in lipid bilayer thickness through adjustments in lipid tail length.

Overall, we find here that changes in membrane mechanical properties—in particu-

lar, lipid bilayer thickness and rigidity—can substantially impact the activation energies of

various protein sensors. Our calculations, which utilized a simple temperature-dependent

membrane mechanical model, underscore the potential significance of membrane me-

chanical properties as crucial contributors to the temperature sensing abilities of key sen-

sory proteins, including chemoreceptors, MscL, and Piezo. Thus, our work suggests that

the elastic coupling of lipid bilayer properties and membrane protein conformational state
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may provide a generic physical mechanism for temperature sensing through membrane

mechanics.

6.4 Overview and conclusions of Chapter 5

In Chapter 5, we investigated the mechanisms governing nuclear adaptation to me-

chanical stress, with a specific focus on the critical role played by emerin proteins and

protein mutations associated with EDMD. We also examined the implications of EDMD

mutations on this process. Our work led to the development of a simple framework for

understanding the self-assembly and stabilization of emerin nanodomains at the INM. In

Sec. 5.1 we introduced of the general mathematical structure of the reaction-diffusion

equations used here, and carried out a linear stability analysis of these equations to iden-

tify the conditions leading to Turing patterns in our model. In Sec. 5.2, we developed

in detail our physical model of emerin nanodomain self-assembly. In Sec. 5.3, we com-

bined experimental measurements and simple estimates of the reaction and diffusion

parameters in our model to predict emerin nanodomain formation, and compared these

predictions to experimental observations.

Our model of emerin nanodomain self-assembly links emerin’s diffusion and reaction

characteristics to key physical attributes of emerin nanodomains, such as their size and

fractional area coverd by emerin. We were able to show that our model accurately predicts

the emerin nandomain size and emerin fractional area coverage for a variety of experi-

mental conditions corresponding to mutations and changes in mechanical stress based

on observations of changes in emerin reaction and diffusion properties. Furthermore, we
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were also able to show that our model accurately predicts the diffusion coefficients of the

∆95-99 mutant emerin system under mechanical stress based on the nanodomain diam-

eter and the wild-type emerin system’s response to mechanical stress. This model also

explained how these properties change in response to mechanical stress and emerin mu-

tations. Our model suggests that emerin nanodomain self-assembly is rooted in a Turing

instability exhibited by the two distinct emerin populations observed at INM: a rapidly-

diffusing emerin population that locally inhibits increases in the emerin concentration at

the membrane through steric repulsion, and slowly-diffusing emerin population locally

binds emerin and NBPs to further increase the emerin concentration at memrbane lo-

cations with elevated emerin concentration. Our results emphasize the critical role of

rapidly-diffusing emerin in the self-assembly of stable emerin nanodomains. The work

described in Chapter 5 thus helps to illuminate the fundamental mechanisms underlying

the formation and physical characteristics of emerin nanodomains, offering insight into

nuclear adaptation to mechanical perturbations and key features of EDMD-associated

mutations or emerin.
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[186] S. Marčelja. “Lipid-mediated protein interaction in membranes”. In: Biochimica et
Biophysica Acta (BBA) - Biomembranes 455.1 (Nov. 1976), pp. 1–7. ISSN:
0005–2736. DOI: https://doi.org/10.1016/0005\textendash2736(76)90149\textendash8.

[187] P. Laguë, M. J. Zuckermann, and B. Roux. “Lipid-Mediated Interactions between
Intrinsic Membrane Proteins: Dependence on Protein Size and Lipid
Composition”. In: Biophysical Journal 81.1 (July 2001), pp. 276–284. ISSN:
0006–3495. DOI:
https://doi.org/10.1016/S0006\textendash3495(01)75698\textendash6.
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Appendices

A Supplemental material for Chapter 2

A.1 Computational implementation of the boundary value method

The general solution for the bilayer thickness deformation field in Eq. (2.20) with

Eq. (2.21) involves modified Bessel functions of the second kind, Kn, of any order n [163].

Kn (x) can vary rapidly with x, leading to numerical overflow and large round-off (floating

point) errors [173]. These numerical issues are compounded by error propagation in the

arithmetic operations necessary for solving the linear system of equations imposing the

bilayer-protein boundary conditions in the BVM [173, 174]. In particular, if the values of

the matrix A in Eq. (2.24) vary over many orders of magnitude, which is typically the case

for the scenarios considered here, the resulting propagation of floating point errors can be

catastrophic. These problems are ameliorated through the APD method, which effectively

reduces the number of terms required in the series in Eq. (2.20) with Eq. (2.21), as well

as LU decomposition with partial pivoting of A [173, 174], which reduces the pairing of

matrix elements that differ over many orders of magnitude.
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We solved the linear system of equations in Eq. (2.24) in C++ using F. Johansson’s

arbitrary precision library for C/C++, Arb [175], which includes built-in functions for LU

decomposition with partial pivoting. Importantly, Arb also includes Bessel functions with

support for complex arguments. The linear system of equations in Eq. (2.24) encom-

passes 4N + 2 independent equations. As N is increased in Eq. (2.20) with Eq. (2.21),

solving Eq. (2.24) therefore becomes increasingly intensive from a computational per-

spective. To improve the computational efficiency of our calculations, we use OpenMP

multi-threading [177] to spread computations across multiple CPU cores.

As discussed in Sec. 2.2, the APD method involves the gap factor Ω in Eq. (2.28),

which we optimized so that the boundary error ηb′ ≤ 0.1% in Eq. (2.25) and we obtained

changes in G and ηb′ of no more than 10−5% as the numerical precision was increased.

A suitable choice for Ω thus allows construction of accurate solutions through Eq. (2.20)

with Eq. (2.21) at lower orders N , thus improving the numerical performance of the BVM.

For example, Fig. A.1 shows ηb′ as a function of Ω for clover-leaf protein shapes with

symmetries s = 1 [see Fig. A.1(a)] and s = 3 [see Fig. A.1(b)], with constant U and

U ′ along the bilayer-protein interface. The solutions in Fig. A.1 were computed at the

indicated orders N in Eq. (2.20) with Eq. (2.21). Figure A.1 illustrates how the optimal

gap factor Ω converges with increasing N . For clover-leaf protein shapes we generally

find that the optimal Ω increases with increasing ϵ. For the scenarios considered here we

also find that, for a given N in Eq. (2.20) with Eq. (2.21) and shape of the protein cross

section, the optimal Ω changes only weakly if one allows for variations in U or U ′ along

the bilayer-protein interface.
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FIG. 18. Boundary error ⌘b0 in Eq. (25) in BVM calculations
(see Sec. III) for clover-leaf protein shapes with (a) s = 1 and
✏ = 0.54 in Eq. (17) and (b) s = 3 and ✏ = 0.38 in Eq. (17) as
a function of the gap factor ⌦ in Eq. (28). We set R ⇡ 2.3 nm,
U = 0.3 nm, and U 0 = 0. For ease of comparison we used the
indicated, fixed values of N in Eq. (20) with Eq. (21).

meet the error tolerances on ⌘b0 in Eq. (25). A suitable
choice for ⌦ allows construction of accurate solutions in
Eq. (20) with Eq. (21) at lower orders N , thus improv-
ing the numerical performance of the BVM. For example,
Fig. 18 shows ⌘b0 as a function of ⌦ for clover-leaf pro-
tein shapes with symmetries s = 1 [see Fig. 18(a)] and
s = 3 [see Fig. 18(b)], with constant U and U 0 along the
bilayer-protein interface. The solutions in Fig. 18 were
computed at the indicated orders N in Eq. (20) with
Eq. (21). Figure 18 illustrates how the optimal gap fac-
tor ⌦ converges with increasing N . We generally find
for clover-leaf protein shapes that the optimal choice for
⌦ increases with increasing ✏. When U and U 0 are al-
lowed to vary along the protein-bilayer interface, we find
that the optimal choice of ⌦ and the corresponding ⌘b0

for a given N in Eq. (20) and protein cross-section shape
C(✓) in Eq. (17) or Eq. (18) with Eq. (19) has a weak
dependence on the assigned profiles of U(✓) and U 0(✓).

20

FIG. 19: (a) Bilayer thickness deformation energy G in
Eq. (26) calculated using the BVM (see Sec. III) and (b)
corresponding boundary error ⌘b0 in Eq. (25) for clover-leaf
protein shapes as a function of the bit precision used in the
numerical computations. We used the indicated values of s
and ✏ in Eq. (17), and R ⇡ 2.3 nm, U = 0.3 nm, and U 0 = 0.
For ease of comparison we employed for s = 1 the fixed values
N = 20 in Eq. (20) with Eq. (21) and ⌦ = 0.726 in Eq. (28),
N = 48 and ⌦ = 0.62 for s = 2, N = 72 and ⌦ = 0.52 for
s = 3, N = 90 and ⌦ = 0.552 For s = 4, and N = 125 and
⌦ = 0.45 for s = 5.

same symmetries s with larger ✏ would require greater
numerical precision than double precision in the compu-
tational implementation of the BVM used here.
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FIG. 19. (a) Bilayer thickness deformation energy G in
Eq. (26) calculated using the BVM (see Sec. III) and (b)
corresponding boundary error ⌘b0 in Eq. (25) for clover-leaf
protein shapes as a function of the bit precision used in the
numerical computations. We used the indicated values of s
and ✏ in Eq. (17), and R ⇡ 2.3 nm, U = 0.3 nm, and U 0 = 0.
For ease of comparison we employed for s = 1 the fixed values
N = 20 in Eq. (20) with Eq. (21) and ⌦ = 0.726 in Eq. (28),
N = 48 and ⌦ = 0.62 for s = 2, N = 72 and ⌦ = 0.52 for
s = 3, N = 90 and ⌦ = 0.552 For s = 4, and N = 125 and
⌦ = 0.45 for s = 5.

APPENDIX B: Protein-induced deformation energy
calculations in double precision

For some of the numerical calculations of the bilayer
thickness deformation energy G in Eq. (26) presented
in this work, we used numbers with substantially more
precision than double precision (64 bits) to meet the
numerical precision criteria of the boundary error ⌘b0 in
Eq. (25) described in Sec. III, with changes in G and
⌘b0 of no more than 10�5% as the numerical precision
of numbers is increased. However, many computing
languages do not have built in support for numerical
precision beyond double precision. In Fig. 19, we plotted
G in panel (a) and ⌘b0 in panel (b) as functions of
bit precision for several clover symmetries s and the
indicated values of ✏ to illustrate rough upper bounds on
✏ for these symmetries s, beyond which clover protein
cross-section shapes of the same symmetries s with
larger ✏ would require greater numerical precision than
double precision in the computational implementation
of the BVM used here. In Fig. 19, the G-curves in panel
(a) and ⌘b0 -curves in panel (b) were calculated with

Figure A.1: Boundary error ηb′ in Eq. (2.25) in BVM calculations (see Sec. 2.2) for clover-
leaf protein shapes with (a) s = 1 and ϵ = 0.54 in Eq. (2.17) and (b) s = 3 and ϵ = 0.38 in
Eq. (2.17) as a function of the gap factor Ω in Eq. (2.28). We set R ≈ 2.3 nm, U = 0.3 nm,
and U ′ = 0. For ease of comparison we used, for each curve, the indicated, fixed values
of N in Eq. (2.20) with Eq. (2.21).

A.2 Numerical precision

For the numerical calculations of the lipid bilayer thickness deformation energy G in

Eq. (2.26) presented in this thesis, we generally used numbers with precision (substan-

tially) greater than double precision (64 bits) [175], so as to meet the numerical precision

criteria described in Sec. 2.2 with the boundary error ηb′ ≤ 0.1% in Eq. (2.25) and changes
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in G and ηb′ of no more than 10−5% as the numerical precision is increased (see also Ap-

pendix A.1). However, many programming languages do not have built-in support for

numerical precision greater than double precision. To illustrate the extent to which dou-

ble precision calculations could be used to approximate the BVM results described here,

we plot in Fig. A.2 the bilayer thickness deformation energy G [see Fig. A.2(a)] and the

corresponding boundary error ηb′ [see Fig. A.2(b)] versus bit precision for several clover-

leaf protein symmetries s and the indicated values of ϵ. As described in Appendix A.1,

the results in Fig. A.2 were obtained with F. Johansson’s arbitrary precision library for

C/C++, Arb [175]. We have ηb′ ≤ 0.1% in Fig. A.2 as the floating point precision is in-

creased beyond double precision, with changes in G and ηb′ of no more than 10−5%. For

the clover-leaf protein shapes considered in this thesis, we generally find that numerical

precision greater than double precision is required for large s or large ϵ. For the polygonal

protein shapes considered in this thesis, we find that a numerical precision greater than

double precision is generally required to meet the numerical precision criteria described

in Sec. 2.2.
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APPENDIX A: Computational implementation of
the boundary value method

The general solution for the bilayer thickness defor-
mation field in Eq. (20) with Eq. (21) involves modified
Bessel functions of the second kind, Kn, of any order
n [43]. Kn(x) can vary rapidly with x, leading to nu-
merical overflow and large round-o↵ (floating point) er-
rors [53]. These numerical issues are further compounded
by error propagation in the arithmetic operations neces-
sary for solving the linear systems of equations relevant
for the BVM [53, 54]. If the values of the matrix A
in Eq. (24) vary over many orders of magnitude, which
is typically the case for the scenarios considered here,
the resulting propagation of floating point errors can be
catastrophic. These problems are ameliorated through
the APD method, which e↵ectively reduces the number
of terms required in the series in Eq. (20) with Eq. (21),
as well as LU decomposition with partial pivoting of A
[53, 54], which reduces the pairing of matrix elements
that di↵er over many orders of magnitude.

We solved the linear system of equations in Eq. (24)
in C++ using F. Johansson’s arbitrary precision library
for C/C++, Arb [55], which includes built-in functions
for LU decomposition with partial pivoting. Importantly,
Arb also includes Bessel functions with support for com-
plex arguments. The linear system in Eq. (24) encom-
passes Q = 4N + 2 independent equations. When Q is
large, solving Eq. (24) is computationally intensive. To
improve the computational e�ciency of our calculations,
we use OpenMP multi-threading [57] to spread compu-
tations across multiple CPU cores.

As discussed in Sec. III, the APD method involves the
gap factor ⌦ in Eq. (28), which we optimized so as to
meet the error tolerances on ⌘b0 in Eq. (25). A suitable
choice for ⌦ allows construction of accurate solutions in
Eq. (20) with Eq. (21) at lower orders N , thus improv-
ing the numerical performance of the BVM. For example,
Fig. 18 shows ⌘b0 as a function of ⌦ for clover-leaf pro-
tein shapes with symmetries s = 1 [see Fig. 18(a)] and
s = 3 [see Fig. 18(b)], with constant U and U 0 along the
bilayer-protein interface. The solutions in Fig. 18 were
computed at the indicated orders N in Eq. (20) with
Eq. (21). Figure 18 illustrates how the optimal gap fac-
tor ⌦ converges with increasing N . We generally find
for clover-leaf protein shapes that the optimal choice for
⌦ increases with increasing ✏. When U and U 0 are al-
lowed to vary along the protein-bilayer interface, we find
that the optimal choice of ⌦ and the corresponding ⌘b0

for a given N in Eq. (20) and protein cross-section shape
C(✓) in Eq. (17) or Eq. (18) with Eq. (19) has a weak
dependence on the assigned profiles of U(✓) and U 0(✓).

FIG. 19. (a) Bilayer thickness deformation energy G in
Eq. (26) calculated using the BVM (see Sec. III) and (b)
corresponding boundary error ⌘b0 in Eq. (25) for clover-leaf
protein shapes as a function of the bit precision used in the
numerical computations. We used the indicated values of s
and ✏ in Eq. (17), and R ⇡ 2.3 nm, U = 0.3 nm, and U 0 = 0.
For ease of comparison we employed for s = 1 the fixed values
N = 20 in Eq. (20) with Eq. (21) and ⌦ = 0.726 in Eq. (28),
N = 48 and ⌦ = 0.62 for s = 2, N = 72 and ⌦ = 0.52 for
s = 3, N = 90 and ⌦ = 0.552 For s = 4, and N = 125 and
⌦ = 0.45 for s = 5.

APPENDIX B: Protein-induced deformation energy
calculations in double precision

For some of the numerical calculations of the bilayer
thickness deformation energy G in Eq. (26) presented
in this work, we used numbers with substantially more
precision than double precision (64 bits) to meet the
numerical precision criteria of the boundary error ⌘b0 in
Eq. (25) described in Sec. III, with changes in G and
⌘b0 of no more than 10�5% as the numerical precision
of numbers is increased. However, many computing
languages do not have built in support for numerical
precision beyond double precision. In Fig. 19, we plotted
G in panel (a) and ⌘b0 in panel (b) as functions of
bit precision for several clover symmetries s and the
indicated values of ✏ to illustrate rough upper bounds on
✏ for these symmetries s, beyond which clover protein
cross-section shapes of the same symmetries s with

Figure A.2: (a) Lipid bilayer thickness deformation energy G in Eq. (2.26) calculated us-
ing the BVM (see Sec. 2.2) and (b) corresponding boundary error ηb′ in Eq. (2.25) for
clover-leaf protein shapes as a function of the bit precision employed in the numerical
computations. We used the indicated values of s and ϵ in Eq. (2.17), and R ≈ 2.3 nm,
U = 0.3 nm, and U ′ = 0. For ease of comparison we used for s = 1 the fixed values
N = 20 in Eq. (2.20) with Eq. (2.21) and Ω = 0.726 in Eq. (2.28), N = 48 and Ω = 0.62 for
s = 2, N = 72 and Ω = 0.52 for s = 3, N = 90 and Ω = 0.552 for s = 4, and N = 125 and
Ω = 0.45 for s = 5.
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B Supplemental material for Chapter 4

B.1 Axisymmetric bilayer midplane deformations

We assume that, for given bilayer-protein boundary conditions and membrane me-

chanical properties, the minimum of the bilayer midplane deformation energy [32–34]

G =
Kb

2

∫
dA (c1 + c2)

2 − τ∆A , (B.1)

with Kb as the lipid bilayer bending rigidity, determines the dominant lipid bilayer shape.

We thereby, we assume the bilayer to be asymptotically flat at a large distance away from

the bilayer-protein boundary. Equation (B.1) considers the (mean curvature) energy due

to bending of the bilayer midplane and the change in its projected in-plane area ∆A under

membrane tension τ , where c1 and c2 represent the local principal curvatures of the bilayer

midplane surface.

Solving the nonlinear shape (Euler-Lagrange) equations for bilayer midplane deforma-

tions is, in general, a very challenging mathematical problem. However, if the deforma-

tions are axisymmetric, we can reformulate the problem using the arc-length parametriza-

tion of surfaces and accurately calculate G in Eq. (B.1). We follow here Refs. [107, 110,

111, 247]. The axial symmetry allows us to parameterize the bilayer midplane shape

solely as a function of the arc-length s measured along the midplane deformation profile.

The bilayer midplane deformation field h (s) represents the vertical coordinate parallel to

the axial line of symmetry (the h-axis), r (s) denotes the radial coordinate perpendicular to

the h-axis, and ψ (s) is the angle between the tangent to the bilayer midplane surface and
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the r-axis. The assumption of a smooth membrane surface at s = 0 yields the following

boundary conditions [107, 110, 111, 247]:

ψ (0) ≡ α , (B.2)

r (0) ≡ r0 , (B.3)

and

h (0) ≡ h0 , (B.4)

where r0, h0, and α are determined by the shape of the bilayer-protein boundary. The

Hamiltonian formalism allows us to derive a set of first-order differential equations whose

solutions yield the stationary lipid bilayer shapes. We numerically solved these equations

using Mathematica’s FindRoot command with a shooting method as described in greater

detail in a previous work [247, 248].
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C Supplemental material for Chapter 5

C.1 Molecule distributions in emerin nanodomains from spatially

heterogeneous diffusion coefficients

Experimental data on emerin systems under various conditions, including mutations

and mechanical stress [12], suggests that emerin cluster at the INM to form stable nan-

odomains that coincide with regions in diffusion maps with slowed-down diffusion (diffu-

sion coefficient νslow ≈ 3 × 10−4µm2/s in wild-type systems under no mechanical stress),

while membrane regions outside emerin nanodomains show faster diffusion of emerin (dif-

fusion coefficient νfast ≈ 2× 10−3µm2/s in wild-type systems under no mechanical stress).

In particular, for wild type emerin systems under no mechanical stress, 56% of the emerin

population at the INM were shown to be fast diffusers. Moreover, local cluster maps of the

emerin revealed that emerin nanodomains roughly cover 15% of the INM area and the rel-

ative density of emerin inside nanodomains was shown to be about 6. In this appendix we

show that, treating the INM as a two-dimensional medium with the observed differences

in diffusion coefficients [227], one finds steady state molecular concentrations of emerin

inside nanodomains, ρslow, and their relative densities inside nanodomains, ⟨Nslow⟩/⟨Nfast⟩,

at the INM that roughly agree with experiments, at least in the case of mechanically un-

perturbed wild-type systems.
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C.1.1 Free diffusion

If no steric constraints are considered and if the particles do not interact with each

other, our system corresponds to standard, “free” diffusion with spatially heterogeneous

diffusion coefficients [227]. For now, we will not directly incorporate effects connected to

molecular crowding, and focus on the free diffusion of emerin molecules. Starting with the

(stochastic) master equation (ME) describing emerin diffusion, we obtained exact analytic

solutions of the steady-state distributions of emerin molecules. Solutions of the ME at

steady state correspond to zero net molecular fluxes across the nanodomain boundaries.

The steady-state solution of our model necessarily corresponds to uniform (average) dis-

tributions of molecules inside and outside nanodomains. In particular, our exact analytic

solution of the ME shows that, in the steady state of the system, the fraction of emerin

molecules inside nanodomains is given by

ρslow =

(
1 +

Γfast

Γslow

)−1

, (C.1)

where, in free diffusion, Γslow and Γfast are the characteristic times randomly diffusing

emerin molecules spend inside and outside emerin nanodomains, respectively. Thus,

for freely diffusing molecules we have Γ = A/ν, where A is the area of the membrane

region characterized by the diffusion coefficient ν. Thus, for our free-diffusion emerin

system we have ρslow = [1 + (Afast/Aslow) / (νfast/νslow)]
−1 with Aslow and Afast as the total

areas of the membrane regions inside and outside nanodomains, respectively. Assum-

ing nanodomains cover 15% of the availabile INM area and the diffusion coefficients are

νslow = 3 × 10−4 µm2/s and νfast = 2 × 10−3 µm2/s, for wild-type emerin systems under
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no mechanical stress, Eq. (C.1) yields the steady state fraction of freely diffusing emerin

inside nanodomains at the INM ρslow ≈ 54%. This aligns well with the experimental mea-

surement of 56% [12].

The density of emerin molecules inside nanodomains is ⟨Nslow⟩ = ρslowM/Aslow, where

M is the total number of emerin molecules at the INM. Likewise, the molecular density of

emerin outside nanodomains is ⟨Nfast⟩ = ρfastM/Afast, with ρfast = 1−ρslow. So, the relative

molecular density of emerin inside nanodomains is

⟨Nslow⟩
⟨Nfast⟩

=
ρslow
ρfast

Afast

Aslow

, (C.2)

Inserting, Eq. (C.1) into Eq. (C.2) and simplifying yields ⟨Nslow⟩/⟨Nfast⟩ = νfast/νslow, and so

the ME predicts that the relative molecular density of emerin inside emerin nanodomains

is governed by the ratio of emerin diffusion coefficients outside to inside emerin nan-

odomains. For wild type emerin systems under no mechanical stress, this ratio evaluates

to about 7 which aligns with the corresponding value of this ratio, ≈ 6, implied by experi-

ments [12].

We also calculated ρslow and ⟨Nslow⟩/⟨Nfast⟩, using Eqs. (C.1)–(C.2), for wild type emerin

systems under mechanical stress, Q133H emerin systems under no mechanical stress,

P183H emerin systems under no mechanical stress, and ∆95-99 emerin systems under

no mechanical stress and mechanical stress, assuming their emerin nanodomains cover

15% of the INM, like wild type emerin systems under no mechanical stress, and using the

diffusion coefficients for νslow and νfast measured in experiments [12] and summarized in

Fig. C.1. We also summarize the results of our free-diffusion model in Fig. C.1.

187



Figure C.1: Table comparing experimental data [12] (orange), estimated rate constants
(blue), free diffusion model predictions [fraction of emerin molecules that are slow dif-
fusers ⇢slow and relative emerin molecule density inside nanodomains hNslowi/hNfasti]
(green), and predictions of our reaction-diffusion model [emerin nanodomain diameter,
`�, the fraction of emerin nanodomain area covered by I and A complexes, F�, of its
ratio to that of the wild type system under no mechanical stress, F�/FWT

� ] (red) for the
various emerin systems in Fig. 5.2 and the �95–99 system under no mechanical stress.
For �95–99 systems under no mechanical stress, emerin nanodomains were essentially
non-existent in experiments [12] and the predicted steady state from our reaction-diffusion
model, so we indicate “null" to denote there are no values to report for their nanodomain
characteristics.

For ⇢slow, our predictions roughly agree with experiments for all cases considered. For

hNslowi/hNfasti, our predictions roughly agree with experiments for wild-type and Q133H

emerin systems under no mechanical stress, but our predictions generally fail to describe

experiments if mechanical force is applied to the system or if emerin is mutated so as to

impair emerin’s ability to cluster [12]. when the system in subjected to mechanical stress

or mutations which greatly impair emerin’s clustering potential [12]. Our results suggest
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Figure C.1: Table comparing experimental data [12] (orange), estimated parameters
(blue), free diffusion model predictions (fraction of emerin molecules that are slow dif-
fusers, ρslow, and relative emerin molecule density inside nanodomains, ⟨Nslow⟩/⟨Nfast⟩)
(green) wild-type emerin systems under no mechanical stress (“WT") and mechanical
stress (“WT; force"), Q133H and P183H mutant emerin systems under no mechanical
stress, and ∆95-99 mutant emerin systems under no mechanical stress (“∆95-99") and
mechanical stress (“∆95-99; force").

For ρslow, our predictions roughly agree with experiments for all cases considered. For

⟨Nslow⟩/⟨Nfast⟩, our predictions roughly agree with experiments for wild-type and Q133H

emerin systems under no mechanical stress, but our predictions generally fail to describe

experiments if mechanical force is applied to the system or if emerin is mutated so as to

impair emerin’s ability to cluster [12]. when the system in subjected to mechanical stress

or mutations which greatly impair emerin’s clustering potential [12]. Our results suggest

that the deficient clustering potential of these systems is greatly hindered by the alteration

in interactions with nuclear binding partners imparted by force and mutations.

Equation (C.1) suggests that the steady-state fractions of emerin molecules concen-

trated inside nanodomains depend only on the fraction of available INM area covered by

nanodomains and on the relative diffusion coefficients inside and outside nanodomains,

and are independent of the detailed arrangement and shape of nanodomains [227]. By
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construction, our simple model is unable to to predict the self-assembly or size of emerin

nandomains, which we address through the reaction-diffusion model described in Chap-

ter 5.

C.1.2 Diffusion in crowded membranes

Our model is readily extended to directly account for steric repulsion arising from the

finite size of emerin molecules, in which case the effective diffusion rates also depend on

the number of emerin molecules occupying the “target” sites of randomly diffusing emerin

molecules. In particular, steric constraints due to the finite size of emerin molecules imply

that, locally, the membrane area can only accommodate some finite number of emerin

molecules, which is expected to modify the results in Sec. C.1.1. To model emerin steric

repulsion, we assume that the rates of diffusion processes locally increasing the molecule

number are ∝ (1−N), where the field N (x, y, t) is the local fractional INM area covered

by emerin molecules. We thereby take N (x, y, t) to be normalized so that 0 ≤ N ≤ 1

[227].

Similarly as in Sec. C.1.1 we directly solved the ME defining our model of diffusion

in crowded membranes in the steady state to obtain the steady-state fractions of emerin

molecules inside emerin nanodomains, yielding Γslow = Aslow/µslow and Γfast = Afast/µfast

[227], where

µfast =
−b+ (b2 − 4ac)

1/2

2a
(C.3)

and

µslow =

[
1 +

νfast
νslow

(
1− µfast

µfast

)]−1

, (C.4)
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with

a = −Aslow

(
νfast − νslow
νfastνslow

)
, b =

Aslow

νslow
+

Afast

νfast
+ ⟨N⟩

(
νfast − νslow
νfastνslow

)
, c = − ⟨N⟩

νslow
. (C.5)

We find, as in Sec. C.1.1, that the direct solution of the ME for our system with steric con-

straints depends on the ratio of membrane area inside and outside emerin nanodomains

and on the ratio of the diffusion coefficients measured inside and outside emerin nan-

odomains, and is independent of detailed emerin nanodomain properties such as the

shape or number of emerin nanodomains. Furthermore, as in Sec. C.1.1, the ME de-

scribing diffusion in crowded membranes implies, in the steady state, uniform (average)

concentrations of emerin inside and outside nanodomains. Importantly, and contrary to

the case of free diffusion, the steady-state fractions of emerin inside emerin nanodomains

and, consequently, the relative densities of emerin inside emerin nanodomains now de-

pend on the fractional INM area covered by emerin molecules ⟨N⟩.

In wild-type emerin systems under no mechanical stress, increasing the fraction of the

INM area covered by emerin molecules, in our model, leads to a decrease in the steady-

state fractions and relative molecular densities inside emerin nanodomains [Fig. C.2(a,b)].

For example, when ⟨N⟩ = 0.02, an upper bound suggested by counting experiments [230],

ρslow ≈ 53% in the steady state, corresponding to ⟨Nslow⟩/⟨Nfast⟩ ≈ 6. We found similar

minor decreases in mutant and mechanically stressed emerin systems.

While incorporation of steric constraints yields somewhat improved agreement be-

tween model predictions and experimental observations (see Fig. C.1), we also find that

steric constraints only tend to have a minor effect on the emerin distributions at the INM.
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Figure C.2: Diffusion-only models applied to wild-type emerin systems under no me-
chanical stress. Steady-state (a) fractions of emerin molecules inside emerin nan-
odomains, ⇢slow, and (b) relative densities of emerin molecules inside emerin nan-
odomains, hNslowi/hNfasti, as a function of the global fractional INM area covered by
emerin molecules, hNi, assuming free diffusion (green curves) and diffusion with steric
constraints linear in the local fractional INM area covered by emerin molecules N (purple
curves). All results were obtained through direct solution of the ME (see Ref. [227]), with
the analytical solutions shown in (a) Eq. (C.1) and (b) Eq. (C.2).
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In contrast, our reaction-diffusion model requires steric repulsion for the self-assembly

and stabilization of emerin nanodomains through a Turing mechanism (see Chapter 5).

We also note that, according to the results discussed here, these steric effects alone

cannot explain the relatively low molecular densities of emerin within nanodomains seen

in experiments of various mutant emerin type systems [12]. This suggests that the ob-

served relative densities of emerin inside and outside emerin nanodomains depend on the

interactions of emerin with its nuclear binding partners at the INM. Additionally, emerin’s

diffusion properties alone cannot explain the characteristic shape, size, and self-assembly

of emerin nanodomains, highlighting the necessity of reactions for a more accurate de-

scription of these properties.
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